65 Commits
1.4.4 ... 1.4.6

Author SHA1 Message Date
Yurii
f4af237472 chore: bump version to 1.4.6 2024-11-16 14:19:40 +03:00
Yurii
c3d0d94806 fix; fix typo 2024-11-01 12:49:35 +03:00
Yurii
e4211c872c fix: hysteresis with native heating control has been fixed 2024-11-01 12:47:32 +03:00
Yurii
467cfea449 feat: ability to use return heat carrier temp as indoor temp 2024-11-01 04:16:50 +03:00
Yurii
0e3473e065 fix: fix typo 2024-11-01 04:10:56 +03:00
Yurii
8780e5245a fix: for some HA entities added missing parameter enabled_by_default 2024-11-01 03:33:35 +03:00
Yurii
94e8288d76 feat: added entities to HA: connected, rssi, battery, humidity for indoor and outdoor sensors; some entities are disabled by default 2024-11-01 02:36:45 +03:00
Yurii
261a53207c refactor: improved turbo mode 2024-10-31 22:35:23 +03:00
Yurii
1dbc895cdb refactor: increased delay before sending data to MQTT after connection 2024-10-31 22:33:11 +03:00
Yurii
747d8841bc refactor: removed resetting modulation and power if response not valid 2024-10-31 22:30:37 +03:00
Yurii
7ed47a4eca chore: updated equitherm calculator 2024-10-31 22:29:04 +03:00
Yurii
0ccea290cb fix: try to auto determine the min boiler power 2024-10-31 05:29:24 +03:00
Yurii
c03df67900 fix: fixed crash if BLE service not found #88 2024-10-31 05:25:34 +03:00
Yurii
f86857c279 feat: improved turbo mode
- added turbo factor parameter
- implemented turbo mode for PID
2024-10-31 05:22:41 +03:00
Yurii
acd8348a5b feat: try to auto determine the min boiler power 2024-10-31 03:49:00 +03:00
Yurii
cdde3c30af chore: fix typos 2024-10-31 02:42:46 +03:00
Yurii
392242ef3e refactor: vendor list updated 2024-10-31 01:36:50 +03:00
Yurii
a6e8953807 refactor: reworked emergency mode; reworked hysteresis algorithm; improved detection of connection state for MANUAL & BOILER type sensors 2024-10-31 01:36:21 +03:00
Yurii
11b1277d79 refactor: added ID validation for opentherm response 2024-10-27 04:33:46 +03:00
Yurii
f62e687d3f fix: fixed pressure and flow validation when using correction 2024-10-27 04:31:35 +03:00
Yurii
42fa95969f fix: compilation on windows fixed for C3, C6 2024-10-27 03:36:18 +03:00
Yurii
56a0d1322f fix: display of fault code and diag code in logs fixed 2024-10-26 21:37:23 +03:00
Yurii
45762967ee refactor: fix wifi scan on esp32, connection timeouts changed 2024-10-26 20:18:23 +03:00
Yurii
10f9cde17a chore: bump pioarduino/platform-espressif32 from 3.0.6 to 3.1.0 rc2 2024-10-26 20:16:54 +03:00
Yurii
351a884685 refactor: increased max request size for /api/settings 2024-10-24 05:13:29 +03:00
Yurii
98db62cc9e fix: fix typo 2024-10-24 05:00:52 +03:00
Yurii
355d983437 chore: copy elf to build dir 2024-10-24 04:26:46 +03:00
Yurii
3d11d13631 feat: added crash recorder and ability to save dump 2024-10-24 04:01:14 +03:00
Yurii
6c4f8a78a0 refactor: added defaults for serial & telnet 2024-10-24 04:00:06 +03:00
Yurii
3fb5eb32c3 refactor: increased max request size for /api/vars and /api/backup/restore 2024-10-24 03:54:26 +03:00
Yurii
c1447098da chore: bump framework-arduinoespressif32 from 3.0.5 to 3.0.6 2024-10-24 03:52:01 +03:00
Yurii
87b222e7bc refactor: increased the max value of dt for pid to 1800 sec 2024-10-21 21:34:53 +03:00
Yurii
0eea1b8121 fix: change of log level when wifi is not connected 2024-10-18 06:45:16 +03:00
Yurii
7f701a74e7 feat: fault state gpio setting replaced with cascade control 2024-10-18 06:14:09 +03:00
Yurii
57cf98ca19 refactor: cosmetic changes; move maxModulation setting to opentherm section 2024-10-15 05:09:20 +03:00
Yurii
c32c643442 refactor: more logs 2024-10-15 04:21:20 +03:00
Yurii
5553a13cc0 feat: added log level setting 2024-10-15 04:07:00 +03:00
Yurii
a9e97c15ad refactor: more logs; improved sensor of current boiler power: added settings min & max boiler power 2024-10-15 02:10:46 +03:00
Yurii
dc62f99b7d feat: added polling of min modulation and max boiler power; added sensor for current boiler power 2024-10-14 19:54:26 +03:00
Yurii
05ff426b28 chore: bump version to 1.4.5 2024-10-13 22:39:20 +03:00
Yurii
45af7a30d8 refactor: cosmetic changes; added coeff. setting for filtering numeric values 2024-10-13 21:42:33 +03:00
Yurii
8aab541afa fix: added min DHW flow rate of 0.1 l/min 2024-10-11 01:38:05 +03:00
Yurii
7672c4b927 fix: fix types 2024-10-11 01:33:49 +03:00
Yurii
b0a9460257 feat: added correction coeff. settings for pressure and dhw flow rate 2024-10-11 01:29:50 +03:00
Yurii
3c69f1295e feat: added opentherm option for filtering numeric values 2024-10-10 21:08:13 +03:00
Yurii
282a02ecdb fix: added request for set opentherm version 2024-10-09 12:33:58 +03:00
Yurii
8503ef966f fix: small fix 2024-10-05 10:27:16 +03:00
Yurii
a4ee4c5224 feat: added diagnostic code polling via opentherm, added hex value for fault code and diag code 2024-10-05 10:03:14 +03:00
Yurii
4478e8f204 chore: updated platformio.ini for ESP32 C6 2024-10-01 01:45:57 +03:00
Yurii
a50c13fd8a Merge branch 'master' of https://github.com/Laxilef/OTGateway 2024-10-01 01:39:27 +03:00
Yurii
ee1e7f92b2 fix: added delay before start web server 2024-10-01 01:39:23 +03:00
Yurii
5704075682 chore: switch from PaulStoffregen/OneWire to pstolarz/OneWireNg 2024-10-01 01:38:57 +03:00
Yurii
52e4933923 fix: compatibility with framework-arduinoespressif32 version 3.0.5 2024-10-01 01:36:44 +03:00
Yurii
00a82ca3e5 chore: switch from espressif/arduino-esp32 to pioarduino/platform-espressif32 for new core 2024-10-01 01:35:36 +03:00
Yurii
7658aeaa8c feat: added opentherm option 'immergasFix' 2024-10-01 01:32:35 +03:00
Yurii
790ff5a011 feat: added Radiant to vendor list 2024-09-30 23:56:52 +03:00
dependabot[bot]
935cf27139 chore: bump peterus/platformio_dependabot from 1.1.1 to 1.2.0 (#80)
Bumps [peterus/platformio_dependabot](https://github.com/peterus/platformio_dependabot) from 1.1.1 to 1.2.0.
- [Release notes](https://github.com/peterus/platformio_dependabot/releases)
- [Commits](https://github.com/peterus/platformio_dependabot/compare/v1.1.1...v1.2.0)

---
updated-dependencies:
- dependency-name: peterus/platformio_dependabot
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-14 00:36:24 +03:00
Yurii
503068f6e7 chore: update readme 2024-09-06 20:29:50 +03:00
Yurii
5c868d589d chore: update files for production 2024-09-06 20:25:29 +03:00
Yurii
1cca8ffd5d chore: update assets 2024-09-06 19:40:30 +03:00
Yurii
f291eb33ac chore: added assets 2024-09-03 18:00:12 +03:00
Yurii
f0c505c332 chore: added blueprints 2024-09-03 17:38:59 +03:00
Yurii
7eafe4a90b fix: compatibility with framework-arduinoespressif32 version 3.0.4 2024-08-22 04:57:13 +03:00
Yurii
d23527a48b chore: bump framework-arduinoespressif32 from 3.0.1 to 3.0.4 2024-08-22 03:34:17 +03:00
Yurii
c341f86e5c refactor: cosmetic changes 2024-08-22 03:33:12 +03:00
47 changed files with 12659 additions and 6975 deletions

View File

@@ -17,6 +17,6 @@ jobs:
- name: Checkout
uses: actions/checkout@v4
- name: run PlatformIO Dependabot
uses: peterus/platformio_dependabot@v1.1.1
uses: peterus/platformio_dependabot@v1.2.0
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -42,7 +42,7 @@ All available information and instructions can be found in the wiki:
* [Quick Start](https://github.com/Laxilef/OTGateway/wiki#quick-start)
* [Build firmware](https://github.com/Laxilef/OTGateway/wiki#build-firmware)
* [Flash firmware via ESP Flash Download Tool](https://github.com/Laxilef/OTGateway/wiki#flash-firmware-via-esp-flash-download-tool)
* [HomeAsssistant settings](https://github.com/Laxilef/OTGateway/wiki#homeasssistant-settings)
* [Settings](https://github.com/Laxilef/OTGateway/wiki#settings)
* [External temperature sensors](https://github.com/Laxilef/OTGateway/wiki#external-temperature-sensors)
* [Reporting indoor/outdoor temperature from any Home Assistant sensor](https://github.com/Laxilef/OTGateway/wiki#reporting-indooroutdoor-temperature-from-any-home-assistant-sensor)
* [Reporting outdoor temperature from Home Assistant weather integration](https://github.com/Laxilef/OTGateway/wiki#reporting-outdoor-temperature-from-home-assistant-weather-integration)

BIN
assets/2D_PCB_bottom.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 261 KiB

BIN
assets/2D_PCB_top.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 326 KiB

BIN
assets/3D_PCB.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 684 KiB

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,12 @@
<?xml version="1.0"?>
<svg xmlns="http://www.w3.org/2000/svg" height="40" aria-label="Import blueprint to My Home Assistant" style="border-radius:24px;width:auto" viewBox="0 0 592 96">
<rect width="592" height="96" fill="#18BCF2" rx="48"/>
<path fill="#fff" d="M42.55 60.2h4.59V36.75h-4.59Zm10.35 0h4.59V43.99l7.23 10.58 7.24-10.62V60.2h4.56V36.75h-4.56v.03l-.4-.03-6.84 10.12-6.83-10.12-.4.03v-.03H52.9Zm29.38 0h4.59v-7.77h4.49c4.72 0 8.07-3.29 8.07-7.87 0-4.59-3.48-7.88-8.44-7.84l-4.66.03h-4.05Zm8.61-19.26c2.27-.04 3.88 1.47 3.88 3.62 0 2.14-1.47 3.65-3.51 3.65h-4.39v-7.27Zm22.98 19.66c6.97 0 11.92-5.02 11.92-12.09 0-7.1-4.95-12.13-12.02-12.13-7.04 0-12 4.99-12 12.13 0 7.07 5 12.09 12.1 12.09m0-4.19c-4.36 0-7.41-3.28-7.41-7.9 0-4.66 3.02-7.94 7.31-7.94 4.32 0 7.33 3.28 7.33 7.94 0 4.62-2.98 7.9-7.23 7.9m16.31 3.79h4.59v-8.31h3.52l4.79 8.31h5.19l-5.42-9.11c2.71-1.21 4.48-3.69 4.48-6.77 0-4.45-3.48-7.64-8.44-7.6l-4.65.03h-4.06Zm8.51-19.26c2.28 0 3.89 1.37 3.89 3.38 0 1.98-1.61 3.38-3.65 3.38h-4.16v-6.76Zm18.33 19.26h4.59V40.94h7v-4.19h-18.63v4.19h7.04Zm23.91 0h9.02c4.69 0 7.77-2.41 7.77-6.7 0-2.65-1.24-4.42-3.42-5.53 1.64-1.17 2.61-2.78 2.61-4.55 0-4.43-3.21-6.7-8.04-6.7l-3.45.03h-4.49Zm7.68-19.8c2.21-.03 3.61 1.07 3.61 2.95s-1.27 2.95-3.25 2.95h-3.55v-5.9Zm.53 9.65c2.41-.03 3.89 1.17 3.89 3.08 0 1.81-1.34 3.02-3.52 3.02h-4.09v-6.1h.24Zm12.97 10.15h14.9v-4.19H206.7V36.75h-4.59Zm18.32-8.74c0 5.62 3.69 9.21 9.51 9.21 5.9 0 9.65-3.59 9.65-9.21V36.75H235v14.71c0 3.01-1.97 4.95-4.99 4.95-3.01 0-4.99-1.94-4.99-4.95V36.75h-4.59Zm24.59 8.74h14.97v-4.19h-10.38v-5.66h8.84v-4.09h-8.84v-5.32h10.25v-4.19h-14.84Zm20.4 0h4.59v-7.77h4.49c4.72 0 8.07-3.29 8.07-7.87 0-4.59-3.48-7.88-8.44-7.84l-4.66.03h-4.05Zm8.61-19.26c2.28-.04 3.89 1.47 3.89 3.62 0 2.14-1.48 3.65-3.52 3.65h-4.39v-7.27Zm12.26 19.26h4.59v-8.31h3.52l4.79 8.31h5.19l-5.43-9.11c2.72-1.21 4.49-3.69 4.49-6.77 0-4.45-3.48-7.64-8.44-7.6l-4.65.03h-4.06Zm8.51-19.26c2.28 0 3.89 1.37 3.89 3.38 0 1.98-1.61 3.38-3.65 3.38h-4.16v-6.76Zm13.77 19.26h4.59V36.75h-4.59Zm10.35 0 4.59.03V44.12l11.66 16.08h4.55V36.75h-4.55v15.81l-11.46-15.81h-4.79Zm31.52 0h4.59V40.94h7.01v-4.19h-18.63v4.19h7.03Zm28.88 0h4.59V40.94h7v-4.19h-18.62v4.19h7.03Zm26 .4c6.97 0 11.92-5.02 11.92-12.09 0-7.1-4.95-12.13-12.02-12.13-7.04 0-12 4.99-12 12.13 0 7.07 5 12.09 12.1 12.09m0-4.19c-4.36 0-7.41-3.28-7.41-7.9 0-4.66 3.02-7.94 7.31-7.94 4.32 0 7.33 3.28 7.33 7.94 0 4.62-2.98 7.9-7.23 7.9"/>
<g style="transform:translate(95px,0)">
<rect width="137" height="64" x="344" y="16" fill="#F2F4F9" rx="32"/>
<path fill="#18BCF2" d="M394.419 37.047V60.5h-4.297V46.797L384.716 60.5h-4.157l-5.343-13.594V60.5h-4.188V37.047h4.188l7.422 18.36 7.484-18.36zm9.365 0 5.344 9.89 5.344-9.89h4.766l-7.969 14.14V60.5h-4.391v-9.312l-8.031-14.141zM457 60c0 1.65-1.35 3-3 3h-24c-1.65 0-3-1.35-3-3v-9c0-1.65.95-3.95 2.12-5.12l10.76-10.76a3 3 0 0 1 4.24 0l10.76 10.76c1.17 1.17 2.12 3.47 2.12 5.12z"/>
<path fill="#F2F4F9" stroke="#F2F4F9" d="M442 45.5a2 2 0 1 0 0-4 2 2 0 0 0 0 4Z"/>
<path fill="#F2F4F9" stroke="#F2F4F9" stroke-miterlimit="10" d="M449.5 53.5a2 2 0 1 0 0-4 2 2 0 0 0 0 4ZM434.5 57.5a2 2 0 1 0 0-4 2 2 0 0 0 0 4Z"/>
<path fill="none" stroke="#F2F4F9" stroke-miterlimit="10" stroke-width="2.25" d="M442 43.48V63l-7.5-7.5M449.5 51.46l-7.41 7.41"/>
</g>
</svg>

After

Width:  |  Height:  |  Size: 3.2 KiB

Binary file not shown.

Binary file not shown.

View File

@@ -1,3 +1,6 @@
# Package for Home Assistant Packages
# More info: https://www.home-assistant.io/docs/configuration/packages/
dhw_meter:
sensor:
- platform: integration

View File

@@ -1,29 +0,0 @@
# Script for reporting outdoor temperature to the controller from home assistant weather integration
# Updated: 07.12.2023
alias: Report outdoor temp to controller from weather
description: ""
variables:
# The source weather from which we take the temperature
source_entity: "weather.home"
# Target entity number where we set the temperature
# If the prefix has not changed, then you do not need to change it
target_entity: "number.opentherm_outdoor_temp"
trigger:
- platform: time_pattern
seconds: /30
condition:
- condition: template
value_template: "{{ states(source_entity) != 'unavailable' and states(target_entity) != 'unavailable' }}"
action:
- if:
- condition: template
value_template: "{{ (state_attr(source_entity, 'temperature')|float(0) - states(target_entity)|float(0)) | abs | round(2) >= 0.1 }}"
then:
- service: number.set_value
data:
value: "{{ state_attr(source_entity, 'temperature')|float(0)|round(2) }}"
target:
entity_id: "{{ target_entity }}"
mode: single

View File

@@ -1,30 +0,0 @@
# Script for reporting indoor/outdoor temperature to the controller from any home assistant sensor
# Updated: 07.12.2023
alias: Report temp to controller
description: ""
variables:
# The source sensor from which we take the temperature
source_entity: "sensor.livingroom_temperature"
# Target entity number where we set the temperature
# To report indoor temperature: number.opentherm_indoor_temp
# To report outdoor temperature: number.opentherm_outdoor_temp
target_entity: "number.opentherm_indoor_temp"
trigger:
- platform: time_pattern
seconds: /30
condition:
- condition: template
value_template: "{{ states(source_entity) != 'unavailable' and states(target_entity) != 'unavailable' }}"
action:
- if:
- condition: template
value_template: "{{ (states(source_entity)|float(0) - states(target_entity)|float(0)) | abs | round(2) >= 0.01 }}"
then:
- service: number.set_value
data:
value: "{{ states(source_entity)|float(0)|round(2) }}"
target:
entity_id: "{{ target_entity }}"
mode: single

View File

@@ -0,0 +1,48 @@
# Blueprint for reporting indoor/outdoor temperature to OpenTherm Gateway from any home assistant sensor
# Updated: 03.09.2024
blueprint:
name: Report temp to OpenTherm Gateway
domain: automation
author: "Laxilef"
input:
source_entity:
name: Source entity
description: "Temperature data source"
selector:
entity:
multiple: false
filter:
- domain: sensor
device_class: temperature
target_entity:
name: Target entity
description: "Usually ``number.opentherm_indoor_temp`` or ``number.opentherm_outdoor_temp``"
default: "number.opentherm_indoor_temp"
selector:
entity:
multiple: false
filter:
- domain: number
mode: single
variables:
source_entity: !input source_entity
target_entity: !input target_entity
trigger:
- platform: time_pattern
seconds: /30
condition:
- condition: template
value_template: "{{ states(source_entity) != 'unavailable' and states(target_entity) != 'unavailable' }}"
action:
- if:
- condition: template
value_template: "{{ (states(source_entity)|float(0) - states(target_entity)|float(0)) | abs | round(2) >= 0.01 }}"
then:
- service: number.set_value
data:
value: "{{ states(source_entity)|float(0)|round(2) }}"
target:
entity_id: "{{ target_entity }}"

View File

@@ -0,0 +1,47 @@
# Blueprint for reporting temperature to OpenTherm Gateway from home assistant weather integration
# Updated: 03.09.2024
blueprint:
name: Report temp to OpenTherm Gateway from Weather
domain: automation
author: "Laxilef"
input:
source_entity:
name: Source entity
description: "Temperature data source"
selector:
entity:
multiple: false
filter:
- domain: weather
target_entity:
name: Target entity
description: "Usually ``number.opentherm_outdoor_temp``"
default: "number.opentherm_outdoor_temp"
selector:
entity:
multiple: false
filter:
- domain: number
mode: single
variables:
source_entity: !input source_entity
target_entity: !input target_entity
trigger:
- platform: time_pattern
seconds: /30
condition:
- condition: template
value_template: "{{ states(source_entity) != 'unavailable' and states(target_entity) != 'unavailable' }}"
action:
- if:
- condition: template
value_template: "{{ (state_attr(source_entity, 'temperature')|float(0) - states(target_entity)|float(0)) | abs | round(2) >= 0.1 }}"
then:
- service: number.set_value
data:
value: "{{ state_attr(source_entity, 'temperature')|float(0)|round(2) }}"
target:
entity_id: "{{ target_entity }}"

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 675 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 154 KiB

View File

@@ -10,7 +10,7 @@ public:
free(this->buffer);
}
void send(int code, const char* contentType, JsonDocument& content) {
void send(int code, const char* contentType, JsonDocument& content, bool pretty = false) {
#ifdef ARDUINO_ARCH_ESP8266
if (!this->webServer->chunkedResponseModeStart(code, contentType)) {
this->webServer->send(505, F("text/html"), F("HTTP1.1 required"));
@@ -24,7 +24,13 @@ public:
this->webServer->send(code, contentType, emptyString);
#endif
serializeJson(content, *this);
if (pretty) {
serializeJsonPretty(content, *this);
} else {
serializeJson(content, *this);
}
this->flush();
#ifdef ARDUINO_ARCH_ESP8266

View File

@@ -79,7 +79,7 @@ public:
}
}
unsigned long setBoilerStatus(bool enableCentralHeating, bool enableHotWater, bool enableCooling, bool enableOutsideTemperatureCompensation, bool enableCentralHeating2, bool summerWinterMode, bool dhwBlocking) {
unsigned long setBoilerStatus(bool enableCentralHeating, bool enableHotWater, bool enableCooling, bool enableOutsideTemperatureCompensation, bool enableCentralHeating2, bool summerWinterMode, bool dhwBlocking, uint8_t lb = 0) {
unsigned int data = enableCentralHeating
| (enableHotWater << 1)
| (enableCooling << 2)
@@ -87,7 +87,9 @@ public:
| (enableCentralHeating2 << 4)
| (summerWinterMode << 5)
| (dhwBlocking << 6);
data <<= 8;
data |= lb;
return this->sendRequest(buildRequest(
OpenThermMessageType::READ_DATA,
@@ -103,7 +105,7 @@ public:
temperatureToData(temperature)
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::TSet);
}
bool setHeatingCh2Temp(float temperature) {
@@ -113,7 +115,7 @@ public:
temperatureToData(temperature)
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::TsetCH2);
}
bool setDhwTemp(float temperature) {
@@ -123,7 +125,7 @@ public:
temperatureToData(temperature)
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::TdhwSet);
}
bool setRoomSetpoint(float temperature) {
@@ -133,7 +135,7 @@ public:
temperatureToData(temperature)
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::TrSet);
}
bool setRoomSetpointCh2(float temperature) {
@@ -143,7 +145,7 @@ public:
temperatureToData(temperature)
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::TrSetCH2);
}
bool setRoomTemp(float temperature) {
@@ -153,7 +155,7 @@ public:
temperatureToData(temperature)
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::Tr);
}
bool sendBoilerReset() {
@@ -165,7 +167,7 @@ public:
data
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::RemoteRequest);
}
bool sendServiceReset() {
@@ -177,7 +179,7 @@ public:
data
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::RemoteRequest);
}
bool sendWaterFilling() {
@@ -189,7 +191,13 @@ public:
data
));
return isValidResponse(response);
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::RemoteRequest);
}
static bool isValidResponseId(unsigned long response, OpenThermMessageID id) {
byte responseId = (response >> 16) & 0xFF;
return (byte)id == responseId;
}
// converters

View File

@@ -27,7 +27,7 @@ public:
}
// лимит выходной величины
void setLimits(int min_output, int max_output) {
void setLimits(unsigned short min_output, unsigned short max_output) {
_minOut = min_output;
_maxOut = max_output;
}
@@ -40,7 +40,7 @@ public:
}
private:
int _minOut = 20, _maxOut = 90;
unsigned short _minOut = 20, _maxOut = 90;
// температура контура отопления в зависимости от наружной температуры
datatype getResultN() {
@@ -58,6 +58,6 @@ private:
// Расчет поправки (ошибки) термостата
datatype getResultT() {
return constrain((targetTemp - indoorTemp), -2, 2) * Kt;
return constrain((targetTemp - indoorTemp), -3, 3) * Kt;
}
};

View File

@@ -247,11 +247,19 @@ namespace NetworkUtils {
this->delayCallback(250);
#endif
if (!this->useDhcp) {
WiFi.config(this->staticIp, this->staticGateway, this->staticSubnet, this->staticDns);
}
#ifdef ARDUINO_ARCH_ESP32
WiFi.setScanMethod(WIFI_ALL_CHANNEL_SCAN);
WiFi.setSortMethod(WIFI_CONNECT_AP_BY_SIGNAL);
#endif
WiFi.begin(this->staSsid, this->staPassword, this->staChannel);
if (!this->useDhcp) {
WiFi.begin(this->staSsid, this->staPassword, this->staChannel, nullptr, false);
WiFi.config(this->staticIp, this->staticGateway, this->staticSubnet, this->staticDns);
WiFi.reconnect();
} else {
WiFi.begin(this->staSsid, this->staPassword, this->staChannel, nullptr, true);
}
unsigned long beginConnectionTime = millis();
while (millis() - beginConnectionTime < timeout) {
@@ -267,7 +275,16 @@ namespace NetworkUtils {
}
void disconnect() {
#ifdef ARDUINO_ARCH_ESP32
WiFi.disconnectAsync(false, true);
const unsigned long start = millis();
while (WiFi.isConnected() && (millis() - start) < 5000) {
this->delayCallback(100);
}
#else
WiFi.disconnect(false, true);
#endif
}
void loop() {
@@ -365,10 +382,10 @@ namespace NetworkUtils {
}
protected:
const unsigned int reconnectInterval = 5000;
const unsigned int failedConnectTimeout = 120000;
const unsigned int connectionTimeout = 15000;
const unsigned int resetConnectionTimeout = 30000;
const unsigned int reconnectInterval = 15000;
const unsigned int failedConnectTimeout = 185000;
const unsigned int connectionTimeout = 5000;
const unsigned int resetConnectionTimeout = 90000;
YieldCallback yieldCallback = []() {
::yield();

View File

@@ -33,18 +33,16 @@ public:
}
#if defined(ARDUINO_ARCH_ESP32)
bool canHandle(HTTPMethod method, const String uri) override {
#else
bool canHandle(HTTPMethod method, const String& uri) override {
bool canHandle(WebServer &server, HTTPMethod method, const String &uri) override {
return this->canHandle(method, uri);
}
#endif
bool canHandle(HTTPMethod method, const String& uri) override {
return uri.equals(this->uri) && (!this->canHandleCallback || this->canHandleCallback(method, uri));
}
#if defined(ARDUINO_ARCH_ESP32)
bool handle(WebServer& server, HTTPMethod method, const String uri) override {
#else
bool handle(WebServer& server, HTTPMethod method, const String& uri) override {
#endif
if (!this->canHandle(method, uri)) {
return false;
}

View File

@@ -28,18 +28,16 @@ public:
}
#if defined(ARDUINO_ARCH_ESP32)
bool canHandle(HTTPMethod method, const String uri) override {
#else
bool canHandle(HTTPMethod method, const String& uri) override {
bool canHandle(WebServer &server, HTTPMethod method, const String &uri) override {
return this->canHandle(method, uri);
}
#endif
bool canHandle(HTTPMethod method, const String& uri) override {
return method == HTTP_GET && uri.equals(this->uri) && (!this->canHandleCallback || this->canHandleCallback(method, uri));
}
#if defined(ARDUINO_ARCH_ESP32)
bool handle(WebServer& server, HTTPMethod method, const String uri) override {
#else
bool handle(WebServer& server, HTTPMethod method, const String& uri) override {
#endif
if (!this->canHandle(method, uri)) {
return false;
}

View File

@@ -58,26 +58,26 @@ public:
}
#if defined(ARDUINO_ARCH_ESP32)
bool canHandle(HTTPMethod method, const String uri) override {
#else
bool canHandle(HTTPMethod method, const String& uri) override {
bool canHandle(WebServer &server, HTTPMethod method, const String &uri) override {
return this->canHandle(method, uri);
}
#endif
bool canHandle(HTTPMethod method, const String& uri) override {
return method == HTTP_POST && uri.equals(this->uri) && (!this->canHandleCallback || this->canHandleCallback(method, uri));
}
#if defined(ARDUINO_ARCH_ESP32)
bool canUpload(const String uri) override {
#else
bool canUpload(const String& uri) override {
bool canUpload(WebServer &server, const String &uri) override {
return this->canUpload(uri);
}
#endif
bool canUpload(const String& uri) override {
return uri.equals(this->uri) && (!this->canUploadCallback || this->canUploadCallback(uri));
}
#if defined(ARDUINO_ARCH_ESP32)
bool handle(WebServer& server, HTTPMethod method, const String uri) override {
#else
bool handle(WebServer& server, HTTPMethod method, const String& uri) override {
#endif
if (this->afterUpgradeCallback) {
this->afterUpgradeCallback(this->firmwareResult, this->filesystemResult);
}
@@ -91,11 +91,7 @@ public:
return true;
}
#if defined(ARDUINO_ARCH_ESP32)
void upload(WebServer& server, const String uri, HTTPUpload& upload) override {
#else
void upload(WebServer& server, const String& uri, HTTPUpload& upload) override {
#endif
UpgradeResult* result;
if (upload.name.equals("firmware")) {
result = &this->firmwareResult;

View File

@@ -11,22 +11,24 @@
[platformio]
;extra_configs = secrets.ini
extra_configs = secrets.default.ini
core_dir = .pio
[env]
version = 1.4.4
version = 1.4.6
framework = arduino
lib_deps =
bblanchon/ArduinoJson@^7.1.0
;ihormelnyk/OpenTherm Library@^1.1.5
https://github.com/ihormelnyk/opentherm_library#master
arduino-libraries/ArduinoMqttClient@^0.1.8
;arduino-libraries/ArduinoMqttClient@^0.1.8
https://github.com/Laxilef/ArduinoMqttClient.git#esp32_core_310
lennarthennigs/ESP Telnet@^2.2
gyverlibs/FileData@^1.0.2
gyverlibs/GyverPID@^3.3.2
gyverlibs/GyverBlinker@^1.1.1
https://github.com/PaulStoffregen/OneWire#master
milesburton/DallasTemperature@^3.11.0
https://github.com/pstolarz/Arduino-Temperature-Control-Library.git#OneWireNg
laxilef/TinyLogger@^1.1.1
build_type = ${secrets.build_type}
build_flags =
-D PIO_FRAMEWORK_ARDUINO_LWIP2_LOW_MEMORY
;-D PIO_FRAMEWORK_ARDUINO_LWIP2_HIGHER_BANDWIDTH_LOW_FLASH
@@ -36,9 +38,11 @@ build_flags =
;-D DEBUG_ESP_CORE -D DEBUG_ESP_WIFI -D DEBUG_ESP_HTTP_SERVER -D DEBUG_ESP_PORT=Serial
-D BUILD_VERSION='"${this.version}"'
-D BUILD_ENV='"$PIOENV"'
-D USE_SERIAL=${secrets.use_serial}
-D USE_TELNET=${secrets.use_telnet}
-D DEBUG_BY_DEFAULT=${secrets.debug}
-D DEFAULT_SERIAL_ENABLE=${secrets.serial_enable}
-D DEFAULT_SERIAL_BAUD=${secrets.serial_baud}
-D DEFAULT_TELNET_ENABLE=${secrets.telnet_enable}
-D DEFAULT_TELNET_PORT=${secrets.telnet_port}
-D DEFAULT_LOG_LEVEL=${secrets.log_level}
-D DEFAULT_HOSTNAME='"${secrets.hostname}"'
-D DEFAULT_AP_SSID='"${secrets.ap_ssid}"'
-D DEFAULT_AP_PASSWORD='"${secrets.ap_password}"'
@@ -66,16 +70,18 @@ lib_deps =
lib_ignore =
extra_scripts =
post:tools/build.py
build_type = ${env.build_type}
build_flags = ${env.build_flags}
board_build.ldscript = eagle.flash.4m1m.ld
[esp32_defaults]
;platform = espressif32@^6.7
platform = https://github.com/platformio/platform-espressif32.git
;platform = https://github.com/platformio/platform-espressif32.git
;platform_packages =
; framework-arduinoespressif32 @ https://github.com/espressif/arduino-esp32.git#3.0.5
; framework-arduinoespressif32-libs @ https://github.com/espressif/esp32-arduino-lib-builder/releases/download/idf-release_v5.1/esp32-arduino-libs-idf-release_v5.1-33fbade6.zip
platform = https://github.com/pioarduino/platform-espressif32/releases/download/53.03.10-rc2/platform-espressif32.zip
platform_packages =
;platformio/framework-arduinoespressif32 @ https://github.com/espressif/arduino-esp32/archive/refs/tags/2.0.17.zip
framework-arduinoespressif32 @ https://github.com/espressif/arduino-esp32.git#3.0.1
framework-arduinoespressif32-libs @ https://github.com/espressif/arduino-esp32/releases/download/3.0.1/esp32-arduino-libs-3.0.1.zip
board_build.partitions = esp32_partitions.csv
lib_deps =
${env.lib_deps}
@@ -85,9 +91,11 @@ lib_ignore =
extra_scripts =
post:tools/esp32.py
post:tools/build.py
build_type = ${env.build_type}
build_flags =
${env.build_flags}
-D CORE_DEBUG_LEVEL=0
-Wl,--wrap=esp_panic_handler
; Boards
@@ -98,6 +106,7 @@ lib_deps = ${esp8266_defaults.lib_deps}
lib_ignore = ${esp8266_defaults.lib_ignore}
extra_scripts = ${esp8266_defaults.extra_scripts}
board_build.ldscript = ${esp8266_defaults.board_build.ldscript}
build_type = ${esp8266_defaults.build_type}
build_flags =
${esp8266_defaults.build_flags}
-D DEFAULT_OT_IN_GPIO=4
@@ -114,6 +123,7 @@ lib_deps = ${esp8266_defaults.lib_deps}
lib_ignore = ${esp8266_defaults.lib_ignore}
extra_scripts = ${esp8266_defaults.extra_scripts}
board_build.ldscript = ${esp8266_defaults.board_build.ldscript}
build_type = ${esp8266_defaults.build_type}
build_flags =
${esp8266_defaults.build_flags}
-D DEFAULT_OT_IN_GPIO=4
@@ -130,6 +140,7 @@ lib_deps = ${esp8266_defaults.lib_deps}
lib_ignore = ${esp8266_defaults.lib_ignore}
extra_scripts = ${esp8266_defaults.extra_scripts}
board_build.ldscript = ${esp8266_defaults.board_build.ldscript}
build_type = ${esp8266_defaults.build_type}
build_flags =
${esp8266_defaults.build_flags}
-D DEFAULT_OT_IN_GPIO=4
@@ -146,6 +157,7 @@ lib_deps = ${esp8266_defaults.lib_deps}
lib_ignore = ${esp8266_defaults.lib_ignore}
extra_scripts = ${esp8266_defaults.extra_scripts}
board_build.ldscript = ${esp8266_defaults.board_build.ldscript}
build_type = ${esp8266_defaults.build_type}
build_flags =
${esp8266_defaults.build_flags}
-D DEFAULT_OT_IN_GPIO=13
@@ -165,6 +177,7 @@ lib_ignore = ${esp32_defaults.lib_ignore}
extra_scripts = ${esp32_defaults.extra_scripts}
build_unflags =
-DARDUINO_USB_MODE=1
build_type = ${esp32_defaults.build_type}
build_flags =
${esp32_defaults.build_flags}
-D ARDUINO_USB_MODE=0
@@ -188,6 +201,7 @@ lib_ignore = ${esp32_defaults.lib_ignore}
extra_scripts = ${esp32_defaults.extra_scripts}
build_unflags =
-DARDUINO_USB_MODE=1
build_type = ${esp32_defaults.build_type}
build_flags =
${esp32_defaults.build_flags}
-D ARDUINO_USB_MODE=0
@@ -212,6 +226,7 @@ lib_ignore = ${esp32_defaults.lib_ignore}
extra_scripts = ${esp32_defaults.extra_scripts}
build_unflags =
-mtext-section-literals
build_type = ${esp32_defaults.build_type}
build_flags =
${esp32_defaults.build_flags}
-D USE_BLE=1
@@ -232,6 +247,7 @@ lib_deps =
${esp32_defaults.nimble_lib}
lib_ignore = ${esp32_defaults.lib_ignore}
extra_scripts = ${esp32_defaults.extra_scripts}
build_type = ${esp32_defaults.build_type}
build_flags =
${esp32_defaults.build_flags}
-D USE_BLE=1
@@ -252,6 +268,7 @@ lib_deps =
${esp32_defaults.nimble_lib}
lib_ignore = ${esp32_defaults.lib_ignore}
extra_scripts = ${esp32_defaults.extra_scripts}
build_type = ${esp32_defaults.build_type}
build_flags =
${esp32_defaults.build_flags}
-D USE_BLE=1
@@ -261,3 +278,21 @@ build_flags =
-D DEFAULT_SENSOR_INDOOR_GPIO=18
-D DEFAULT_STATUS_LED_GPIO=2
-D DEFAULT_OT_RX_LED_GPIO=19
[env:esp32_c6]
platform = ${esp32_defaults.platform}
platform_packages = ${esp32_defaults.platform_packages}
board = esp32-c6-devkitm-1
board_build.partitions = ${esp32_defaults.board_build.partitions}
lib_deps =
${esp32_defaults.lib_deps}
;${esp32_defaults.nimble_lib}
lib_ignore = ${esp32_defaults.lib_ignore}
extra_scripts = ${esp32_defaults.extra_scripts}
build_unflags =
-mtext-section-literals
build_type = ${esp32_defaults.build_type}
build_flags =
${esp32_defaults.build_flags}
; Currently the NimBLE library is incompatible with ESP32 C6
;-D USE_BLE=1

View File

@@ -1,7 +1,11 @@
[secrets]
use_serial = true
use_telnet = true
debug = true
build_type = release
serial_enable = true
serial_baud = 115200
telnet_enable = true
telnet_port = 23
log_level = 5
hostname = opentherm
ap_ssid = OpenTherm Gateway

132
src/CrashRecorder.h Normal file
View File

@@ -0,0 +1,132 @@
#pragma once
#include <Arduino.h>
#ifdef ARDUINO_ARCH_ESP32
#include "esp_err.h"
#endif
#ifdef ARDUINO_ARCH_ESP8266
extern "C" {
#include <user_interface.h>
}
// https://github.com/espressif/ESP8266_RTOS_SDK/blob/master/components/esp8266/include/esp_attr.h
#define _COUNTER_STRINGIFY(COUNTER) #COUNTER
#define _SECTION_ATTR_IMPL(SECTION, COUNTER) __attribute__((section(SECTION "." _COUNTER_STRINGIFY(COUNTER))))
#define __NOINIT_ATTR _SECTION_ATTR_IMPL(".noinit", __COUNTER__)
#endif
namespace CrashRecorder {
typedef struct {
unsigned int data[32];
uint8_t length;
bool continues;
} backtrace_t;
typedef struct {
unsigned int data[4];
uint8_t length;
} epc_t;
typedef struct {
uint8_t core;
size_t heap;
unsigned long uptime;
} ext_t;
__NOINIT_ATTR volatile static backtrace_t backtrace;
__NOINIT_ATTR volatile static epc_t epc;
__NOINIT_ATTR volatile static ext_t ext;
uint8_t backtraceMaxLength = sizeof(backtrace.data) / sizeof(*backtrace.data);
uint8_t epcMaxLength = sizeof(epc.data) / sizeof(*epc.data);
#ifdef ARDUINO_ARCH_ESP32
void IRAM_ATTR panicHandler(arduino_panic_info_t *info, void *arg) {;
ext.core = info->core;
ext.heap = ESP.getFreeHeap();
ext.uptime = millis() / 1000u;
// Backtrace
backtrace.length = info->backtrace_len < backtraceMaxLength ? info->backtrace_len : backtraceMaxLength;
backtrace.continues = false;
for (unsigned int i = 0; i < info->backtrace_len; i++) {
if (i >= backtraceMaxLength) {
backtrace.continues = true;
break;
}
backtrace.data[i] = info->backtrace[i];
}
// EPC
if (info->pc) {
epc.data[0] = (unsigned int) info->pc;
epc.length = 1;
} else {
epc.length = 0;
}
}
#endif
void init() {
if (backtrace.length > backtraceMaxLength) {
backtrace.length = 0;
}
if (epc.length > epcMaxLength) {
epc.length = 0;
}
#ifdef ARDUINO_ARCH_ESP32
set_arduino_panic_handler(panicHandler, nullptr);
#endif
}
}
#ifdef ARDUINO_ARCH_ESP8266
extern "C" void custom_crash_callback(struct rst_info *info, uint32_t stack, uint32_t stack_end) {
uint8_t _length = 0;
CrashRecorder::ext.core = 0;
CrashRecorder::ext.heap = ESP.getFreeHeap();
CrashRecorder::ext.uptime = millis() / 1000u;
// Backtrace
CrashRecorder::backtrace.continues = false;
uint32_t value;
for (uint32_t i = stack; i < stack_end; i += 4) {
value = *((uint32_t*) i);
// keep only addresses in code area
if ((value >= 0x40000000) && (value < 0x40300000)) {
if (_length >= CrashRecorder::backtraceMaxLength) {
CrashRecorder::backtrace.continues = true;
break;
}
CrashRecorder::backtrace.data[_length++] = value;
}
}
CrashRecorder::backtrace.length = _length;
// EPC
_length = 0;
if (info->epc1 > 0) {
CrashRecorder::epc.data[_length++] = info->epc1;
}
if (info->epc2 > 0) {
CrashRecorder::epc.data[_length++] = info->epc2;
}
if (info->epc3 > 0) {
CrashRecorder::epc.data[_length++] = info->epc3;
}
CrashRecorder::epc.length = _length;
}
#endif

View File

@@ -50,7 +50,7 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SWITCH), F("heating_turbo")).c_str(), doc);
}
bool publishNumberHeatingTarget(UnitSystem unit = UnitSystem::METRIC, byte minTemp = 20, byte maxTemp = 90, bool enabledByDefault = true) {
bool publishInputHeatingTarget(UnitSystem unit = UnitSystem::METRIC, byte minTemp = 20, byte maxTemp = 90, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
@@ -82,8 +82,9 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("heating_target")).c_str(), doc);
}
bool publishNumberHeatingHysteresis(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
bool publishInputHeatingHysteresis(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("heating_hysteresis"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("heating_hysteresis"));
@@ -100,12 +101,12 @@ public:
doc[FPSTR(HA_NAME)] = F("Heating hysteresis");
doc[FPSTR(HA_ICON)] = F("mdi:altimeter");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.heating.hysteresis|float(0)|round(1) }}");
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.heating.hysteresis|float(0)|round(2) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->getDeviceTopic(F("settings/set"));
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"heating\": {\"hysteresis\" : {{ value }}}}");
doc[FPSTR(HA_MIN)] = 0;
doc[FPSTR(HA_MAX)] = 5;
doc[FPSTR(HA_STEP)] = 0.1f;
doc[FPSTR(HA_MAX)] = 15;
doc[FPSTR(HA_STEP)] = 0.01f;
doc[FPSTR(HA_MODE)] = "box";
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
@@ -113,6 +114,98 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("heating_hysteresis")).c_str(), doc);
}
bool publishInputHeatingTurboFactor(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("heating_turbo_factor"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("heating_turbo_factor"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
doc[FPSTR(HA_DEVICE_CLASS)] = F("power_factor");
doc[FPSTR(HA_NAME)] = F("Heating turbo factor");
doc[FPSTR(HA_ICON)] = F("mdi:multiplication-box");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.heating.turboFactor|float(0)|round(2) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->getDeviceTopic(F("settings/set"));
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"heating\": {\"turboFactor\" : {{ value }}}}");
doc[FPSTR(HA_MIN)] = 1.5;
doc[FPSTR(HA_MAX)] = 10;
doc[FPSTR(HA_STEP)] = 0.01f;
doc[FPSTR(HA_MODE)] = "box";
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("heating_turbo_factor")).c_str(), doc);
}
bool publishInputHeatingMinTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("heating_min_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("heating_min_temp"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
doc[FPSTR(HA_DEVICE_CLASS)] = F("temperature");
if (unit == UnitSystem::METRIC) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_C);
doc[FPSTR(HA_MIN)] = 0;
doc[FPSTR(HA_MAX)] = 99;
} else if (unit == UnitSystem::IMPERIAL) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_F);
doc[FPSTR(HA_MIN)] = 32;
doc[FPSTR(HA_MAX)] = 211;
}
doc[FPSTR(HA_NAME)] = F("Heating min temp");
doc[FPSTR(HA_ICON)] = F("mdi:thermometer-chevron-down");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.heating.minTemp|float(0)|round(1) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->getDeviceTopic(F("settings/set"));
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"heating\": {\"minTemp\" : {{ value }}}}");
doc[FPSTR(HA_STEP)] = 1;
doc[FPSTR(HA_MODE)] = "box";
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("heating_min_temp")).c_str(), doc);
}
bool publishInputHeatingMaxTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("heating_max_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("heating_max_temp"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
doc[FPSTR(HA_DEVICE_CLASS)] = F("temperature");
if (unit == UnitSystem::METRIC) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_C);
doc[FPSTR(HA_MIN)] = 1;
doc[FPSTR(HA_MAX)] = 100;
} else if (unit == UnitSystem::IMPERIAL) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_F);
doc[FPSTR(HA_MIN)] = 33;
doc[FPSTR(HA_MAX)] = 212;
}
doc[FPSTR(HA_NAME)] = F("Heating max temp");
doc[FPSTR(HA_ICON)] = F("mdi:thermometer-chevron-up");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.heating.maxTemp|float(0)|round(1) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->getDeviceTopic(F("settings/set"));
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"heating\": {\"maxTemp\" : {{ value }}}}");
doc[FPSTR(HA_STEP)] = 1;
doc[FPSTR(HA_MODE)] = "box";
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("heating_max_temp")).c_str(), doc);
}
bool publishSensorHeatingSetpoint(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
@@ -200,96 +293,6 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("boiler_heating_max_temp")).c_str(), doc);
}
bool publishNumberHeatingMinTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("heating_min_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("heating_min_temp"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
doc[FPSTR(HA_DEVICE_CLASS)] = F("temperature");
if (unit == UnitSystem::METRIC) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_C);
doc[FPSTR(HA_MIN)] = 0;
doc[FPSTR(HA_MAX)] = 99;
} else if (unit == UnitSystem::IMPERIAL) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_F);
doc[FPSTR(HA_MIN)] = 32;
doc[FPSTR(HA_MAX)] = 211;
}
doc[FPSTR(HA_NAME)] = F("Heating min temp");
doc[FPSTR(HA_ICON)] = F("mdi:thermometer-chevron-down");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.heating.minTemp|float(0)|round(1) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->getDeviceTopic(F("settings/set"));
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"heating\": {\"minTemp\" : {{ value }}}}");
doc[FPSTR(HA_STEP)] = 1;
doc[FPSTR(HA_MODE)] = "box";
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("heating_min_temp")).c_str(), doc);
}
bool publishNumberHeatingMaxTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("heating_max_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("heating_max_temp"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
doc[FPSTR(HA_DEVICE_CLASS)] = F("temperature");
if (unit == UnitSystem::METRIC) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_C);
doc[FPSTR(HA_MIN)] = 1;
doc[FPSTR(HA_MAX)] = 100;
} else if (unit == UnitSystem::IMPERIAL) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_F);
doc[FPSTR(HA_MIN)] = 33;
doc[FPSTR(HA_MAX)] = 212;
}
doc[FPSTR(HA_NAME)] = F("Heating max temp");
doc[FPSTR(HA_ICON)] = F("mdi:thermometer-chevron-up");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.heating.maxTemp|float(0)|round(1) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->getDeviceTopic(F("settings/set"));
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"heating\": {\"maxTemp\" : {{ value }}}}");
doc[FPSTR(HA_STEP)] = 1;
doc[FPSTR(HA_MODE)] = "box";
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("heating_max_temp")).c_str(), doc);
}
bool publishNumberHeatingMaxModulation(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("heating_max_modulation"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("heating_max_modulation"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
doc[FPSTR(HA_DEVICE_CLASS)] = F("power_factor");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("%");
doc[FPSTR(HA_NAME)] = F("Max modulation");
doc[FPSTR(HA_ICON)] = F("mdi:speedometer");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.heating.maxModulation|int(1) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->getDeviceTopic(F("settings/set"));
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"heating\": {\"maxModulation\" : {{ value }}}}");
doc[FPSTR(HA_MIN)] = 1;
doc[FPSTR(HA_MAX)] = 100;
doc[FPSTR(HA_STEP)] = 1;
doc[FPSTR(HA_MODE)] = "box";
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("heating_max_modulation")).c_str(), doc);
}
bool publishSwitchDhw(bool enabledByDefault = true) {
JsonDocument doc;
@@ -313,7 +316,7 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SWITCH), F("dhw")).c_str(), doc);
}
bool publishNumberDhwTarget(UnitSystem unit = UnitSystem::METRIC, byte minTemp = 40, byte maxTemp = 60, bool enabledByDefault = true) {
bool publishInputDhwTarget(UnitSystem unit = UnitSystem::METRIC, byte minTemp = 40, byte maxTemp = 60, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
@@ -405,8 +408,9 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("boiler_dhw_max_temp")).c_str(), doc);
}
bool publishNumberDhwMinTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
bool publishInputDhwMinTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("dhw_min_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("dhw_min_temp"));
@@ -438,8 +442,9 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("dhw_min_temp")).c_str(), doc);
}
bool publishNumberDhwMaxTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
bool publishInputDhwMaxTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("dhw_max_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("dhw_max_temp"));
@@ -474,6 +479,7 @@ public:
bool publishSwitchPid(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("pid"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("pid"));
@@ -493,8 +499,10 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SWITCH), F("pid")).c_str(), doc);
}
bool publishNumberPidFactorP(bool enabledByDefault = true) {
bool publishInputPidFactorP(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("pid_p"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("pid_p"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
@@ -514,8 +522,10 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("pid_p_factor")).c_str(), doc);
}
bool publishNumberPidFactorI(bool enabledByDefault = true) {
bool publishInputPidFactorI(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("pid_i"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("pid_i"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
@@ -535,8 +545,10 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("pid_i_factor")).c_str(), doc);
}
bool publishNumberPidFactorD(bool enabledByDefault = true) {
bool publishInputPidFactorD(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("pid_d"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("pid_d"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
@@ -556,8 +568,10 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("pid_d_factor")).c_str(), doc);
}
bool publishNumberPidDt(bool enabledByDefault = true) {
bool publishInputPidDt(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("pid_dt"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("pid_dt"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
@@ -570,7 +584,7 @@ public:
doc[FPSTR(HA_COMMAND_TOPIC)] = this->getDeviceTopic(F("settings/set"));
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"pid\": {\"dt\" : {{ value }}}}");
doc[FPSTR(HA_MIN)] = 30;
doc[FPSTR(HA_MAX)] = 600;
doc[FPSTR(HA_MAX)] = 1800;
doc[FPSTR(HA_STEP)] = 1;
doc[FPSTR(HA_MODE)] = "box";
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
@@ -579,8 +593,9 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("pid_dt")).c_str(), doc);
}
bool publishNumberPidMinTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
bool publishInputPidMinTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("pid_min_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("pid_min_temp"));
@@ -589,12 +604,12 @@ public:
if (unit == UnitSystem::METRIC) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_C);
doc[FPSTR(HA_MIN)] = 0;
doc[FPSTR(HA_MIN)] = -99;
doc[FPSTR(HA_MAX)] = 99;
} else if (unit == UnitSystem::IMPERIAL) {
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR(HA_UNIT_OF_MEASUREMENT_F);
doc[FPSTR(HA_MIN)] = 0;
doc[FPSTR(HA_MIN)] = -146;
doc[FPSTR(HA_MAX)] = 211;
}
@@ -612,8 +627,9 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("pid_min_temp")).c_str(), doc);
}
bool publishNumberPidMaxTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
bool publishInputPidMaxTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("pid_max_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("pid_max_temp"));
@@ -648,6 +664,7 @@ public:
bool publishSwitchEquitherm(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("equitherm"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("equitherm"));
@@ -667,8 +684,10 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SWITCH), F("equitherm")).c_str(), doc);
}
bool publishNumberEquithermFactorN(bool enabledByDefault = true) {
bool publishInputEquithermFactorN(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("equitherm_n"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("equitherm_n"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
@@ -688,8 +707,10 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_n_factor")).c_str(), doc);
}
bool publishNumberEquithermFactorK(bool enabledByDefault = true) {
bool publishInputEquithermFactorK(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("equitherm_k"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("equitherm_k"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
@@ -709,10 +730,13 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_k_factor")).c_str(), doc);
}
bool publishNumberEquithermFactorT(bool enabledByDefault = true) {
bool publishInputEquithermFactorT(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.pid.enable, 'offline', 'online') }}");
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("settings"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.pid.enable, 'offline', 'online') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("equitherm_t"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("equitherm_t"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("config");
@@ -733,7 +757,7 @@ public:
}
bool publishBinSensorStatus(bool enabledByDefault = true) {
bool publishStateStatus(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("status"));
@@ -750,24 +774,43 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("status")).c_str(), doc);
}
bool publishBinSensorOtStatus(bool enabledByDefault = true) {
bool publishStateEmergency(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("emergency"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("emergency"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("problem");
doc[FPSTR(HA_NAME)] = F("Emergency mode");
doc[FPSTR(HA_ICON)] = F("mdi:alert-rhombus-outline");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.emergency, 'ON', 'OFF') }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("emergency")).c_str(), doc);
}
bool publishStateOtStatus(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("ot_status"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("ot_status"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("problem");
doc[FPSTR(HA_DEVICE_CLASS)] = F("connectivity");
doc[FPSTR(HA_NAME)] = F("Opentherm status");
doc[FPSTR(HA_ICON)] = F("mdi:list-status");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.otStatus, 'OFF', 'ON') }}");
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.otStatus, 'ON', 'OFF') }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("ot_status")).c_str(), doc);
}
bool publishBinSensorHeating(bool enabledByDefault = true) {
bool publishStateHeating(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
@@ -788,7 +831,7 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("heating")).c_str(), doc);
}
bool publishBinSensorDhw(bool enabledByDefault = true) {
bool publishStateDhw(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
@@ -809,7 +852,7 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("dhw")).c_str(), doc);
}
bool publishBinSensorFlame(bool enabledByDefault = true) {
bool publishStateFlame(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
@@ -830,7 +873,7 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("flame")).c_str(), doc);
}
bool publishBinSensorFault(bool enabledByDefault = true) {
bool publishStateFault(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
@@ -851,7 +894,7 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("fault")).c_str(), doc);
}
bool publishBinSensorDiagnostic(bool enabledByDefault = true) {
bool publishStateDiagnostic(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
@@ -872,64 +915,22 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("diagnostic")).c_str(), doc);
}
bool publishSensorFaultCode(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.otStatus and value_json.states.fault, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("fault_code"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("fault_code"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_NAME)] = F("Fault code");
doc[FPSTR(HA_ICON)] = F("mdi:chat-alert-outline");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ \"E%02d\"|format(value_json.sensors.faultCode) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("fault_code")).c_str(), doc);
}
bool publishSensorRssi(bool enabledByDefault = true) {
bool publishStateExtPump(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("rssi"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("rssi"));
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("ext_pump"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("ext_pump"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("signal_strength");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("dBm");
doc[FPSTR(HA_NAME)] = F("RSSI");
doc[FPSTR(HA_ICON)] = F("mdi:signal");
doc[FPSTR(HA_DEVICE_CLASS)] = F("running");
doc[FPSTR(HA_NAME)] = F("External pump");
doc[FPSTR(HA_ICON)] = F("mdi:pump");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.rssi|float(0)|round(1) }}");
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.externalPump, 'ON', 'OFF') }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("rssi")).c_str(), doc);
}
bool publishSensorUptime(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("uptime"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("uptime"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("duration");
doc[FPSTR(HA_STATE_CLASS)] = F("total_increasing");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("s");
doc[FPSTR(HA_NAME)] = F("Uptime");
doc[FPSTR(HA_ICON)] = F("mdi:clock-start");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.uptime|int(0) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("uptime")).c_str(), doc);
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("ext_pump")).c_str(), doc);
}
@@ -1016,9 +1017,263 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("dhw_flow_rate")).c_str(), doc);
}
bool publishNumberIndoorTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
bool publishSensorPower(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.otStatus, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("power"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("power"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("power");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("kW");
doc[FPSTR(HA_NAME)] = F("Current power");
doc[FPSTR(HA_ICON)] = F("mdi:chart-bar");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.power|float(0)|round(2) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("power")).c_str(), doc);
}
bool publishSensorFaultCode(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.otStatus and value_json.states.fault, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("fault_code"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("fault_code"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_NAME)] = F("Fault code");
doc[FPSTR(HA_ICON)] = F("mdi:chat-alert-outline");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ \"%02d (0x%02X)\"|format(value_json.sensors.faultCode, value_json.sensors.faultCode) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("fault_code")).c_str(), doc);
}
bool publishSensorDiagnosticCode(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.otStatus and value_json.states.fault or value_json.states.diagnostic, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("diagnostic_code"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("diagnostic_code"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_NAME)] = F("Diagnostic code");
doc[FPSTR(HA_ICON)] = F("mdi:chat-alert-outline");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ \"%02d (0x%02X)\"|format(value_json.sensors.diagnosticCode, value_json.sensors.diagnosticCode) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("diagnostic_code")).c_str(), doc);
}
bool publishSensorRssi(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("rssi"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("rssi"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("signal_strength");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("dBm");
doc[FPSTR(HA_NAME)] = F("RSSI");
doc[FPSTR(HA_ICON)] = F("mdi:signal");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.rssi|float(0)|round(1) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("rssi")).c_str(), doc);
}
bool publishSensorUptime(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("uptime"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("uptime"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("duration");
doc[FPSTR(HA_STATE_CLASS)] = F("total_increasing");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("s");
doc[FPSTR(HA_NAME)] = F("Uptime");
doc[FPSTR(HA_ICON)] = F("mdi:clock-start");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.uptime|int(0) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("uptime")).c_str(), doc);
}
bool publishOutdoorSensorConnected(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("outdoor_sensor_connected"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("outdoor_sensor_connected"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("connectivity");
doc[FPSTR(HA_NAME)] = F("Outdoor sensor connected");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.sensors.outdoor.connected, 'ON', 'OFF') }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("outdoor_sensor_connected")).c_str(), doc);
}
bool publishOutdoorSensorRssi(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("outdoor_sensor_rssi"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("outdoor_sensor_rssi"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("signal_strength");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("dBm");
doc[FPSTR(HA_NAME)] = F("Outdoor sensor RSSI");
doc[FPSTR(HA_ICON)] = F("mdi:signal");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.outdoor.rssi|float(0)|round(1) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("outdoor_sensor_rssi")).c_str(), doc);
}
bool publishOutdoorSensorBattery(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("outdoor_sensor_battery"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("outdoor_sensor_battery"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("battery");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR("%");
doc[FPSTR(HA_NAME)] = F("Outdoor sensor battery");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.outdoor.battery|float(0)|round(1) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("outdoor_sensor_battery")).c_str(), doc);
}
bool publishOutdoorSensorHumidity(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("outdoor_sensor_humidity"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("outdoor_sensor_humidity"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("humidity");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR("%");
doc[FPSTR(HA_NAME)] = F("Outdoor sensor humidity");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.outdoor.humidity|float(0)|round(1) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("outdoor_sensor_humidity")).c_str(), doc);
}
bool publishIndoorSensorConnected(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("indoor_sensor_connected"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("indoor_sensor_connected"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("connectivity");
doc[FPSTR(HA_NAME)] = F("Indoor sensor connected");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.sensors.indoor.connected, 'ON', 'OFF') }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("indoor_sensor_connected")).c_str(), doc);
}
bool publishIndoorSensorRssi(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("indoor_sensor_rssi"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("indoor_sensor_rssi"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("signal_strength");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("dBm");
doc[FPSTR(HA_NAME)] = F("Indoor sensor RSSI");
doc[FPSTR(HA_ICON)] = F("mdi:signal");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.indoor.rssi|float(0)|round(1) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("indoor_sensor_rssi")).c_str(), doc);
}
bool publishIndoorSensorBattery(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("indoor_sensor_battery"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("indoor_sensor_battery"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("battery");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR("%");
doc[FPSTR(HA_NAME)] = F("Indoor sensor battery");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.indoor.battery|float(0)|round(1) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("indoor_sensor_battery")).c_str(), doc);
}
bool publishIndoorSensorHumidity(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("indoor_sensor_humidity"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("indoor_sensor_humidity"));
doc[FPSTR(HA_ENTITY_CATEGORY)] = F("diagnostic");
doc[FPSTR(HA_DEVICE_CLASS)] = F("humidity");
doc[FPSTR(HA_STATE_CLASS)] = F("measurement");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = FPSTR("%");
doc[FPSTR(HA_NAME)] = F("Indoor sensor humidity");
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.sensors.indoor.humidity|float(0)|round(1) }}");
doc[FPSTR(HA_EXPIRE_AFTER)] = 120;
doc.shrinkToFit();
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("indoor_sensor_humidity")).c_str(), doc);
}
bool publishInputIndoorTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("indoor_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("indoor_temp"));
@@ -1076,8 +1331,9 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("indoor_temp")).c_str(), doc);
}
bool publishNumberOutdoorTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
bool publishInputOutdoorTemp(UnitSystem unit = UnitSystem::METRIC, bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("outdoor_temp"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("outdoor_temp"));
@@ -1363,6 +1619,7 @@ public:
bool publishButtonRestart(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("restart"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("restart"));
@@ -1379,8 +1636,10 @@ public:
bool publishButtonResetFault(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.fault, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.fault, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("reset_fault"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("reset_fault"));
@@ -1397,8 +1656,10 @@ public:
bool publishButtonResetDiagnostic(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.diagnostic, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("status"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->getDeviceTopic(F("state"));
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.states.diagnostic, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectId(F("reset_diagnostic"));
doc[FPSTR(HA_OBJECT_ID)] = this->getObjectId(F("reset_diagnostic"));
@@ -1414,7 +1675,7 @@ public:
}
bool deleteNumberOutdoorTemp() {
bool deleteInputOutdoorTemp() {
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("outdoor_temp")).c_str());
}
@@ -1422,7 +1683,7 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("outdoor_temp")).c_str());
}
bool deleteNumberIndoorTemp() {
bool deleteInputIndoorTemp() {
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("indoor_temp")).c_str());
}
@@ -1442,15 +1703,15 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("boiler_dhw_max_temp")).c_str());
}
bool deleteNumberDhwMinTemp() {
bool deleteInputDhwMinTemp() {
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("dhw_min_temp")).c_str());
}
bool deleteNumberDhwMaxTemp() {
bool deleteInputDhwMaxTemp() {
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("dhw_max_temp")).c_str());
}
bool deleteBinSensorDhw() {
bool deleteStateDhw() {
return this->publish(this->getTopic(FPSTR(HA_ENTITY_BINARY_SENSOR), F("dhw")).c_str());
}
@@ -1458,7 +1719,7 @@ public:
return this->publish(this->getTopic(FPSTR(HA_ENTITY_SENSOR), F("dhw_temp")).c_str());
}
bool deleteNumberDhwTarget() {
bool deleteInputDhwTarget() {
return this->publish(this->getTopic(FPSTR(HA_ENTITY_NUMBER), F("dhw_target")).c_str());
}

View File

@@ -86,6 +86,12 @@ protected:
vars.states.mqtt = tMqtt->isConnected();
vars.sensors.rssi = network->isConnected() ? WiFi.RSSI() : 0;
if (settings.system.logLevel >= TinyLogger::Level::SILENT && settings.system.logLevel <= TinyLogger::Level::VERBOSE) {
if (Log.getLevel() != settings.system.logLevel) {
Log.setLevel(static_cast<TinyLogger::Level>(settings.system.logLevel));
}
}
if (network->isConnected()) {
if (!this->telnetStarted && telnetStream != nullptr) {
telnetStream->begin(23, false);
@@ -99,11 +105,12 @@ protected:
tMqtt->disable();
}
if ( Log.getLevel() != TinyLogger::Level::INFO && !settings.system.debug ) {
Log.setLevel(TinyLogger::Level::INFO);
if (settings.sensors.indoor.type == SensorType::MANUAL) {
vars.sensors.indoor.connected = !settings.mqtt.enable || vars.states.mqtt;
}
} else if ( Log.getLevel() != TinyLogger::Level::VERBOSE && settings.system.debug ) {
Log.setLevel(TinyLogger::Level::VERBOSE);
if (settings.sensors.outdoor.type == SensorType::MANUAL) {
vars.sensors.outdoor.connected = !settings.mqtt.enable || vars.states.mqtt;
}
} else {
@@ -115,11 +122,20 @@ protected:
if (tMqtt->isEnabled()) {
tMqtt->disable();
}
if (settings.sensors.indoor.type == SensorType::MANUAL) {
vars.sensors.indoor.connected = false;
}
if (settings.sensors.outdoor.type == SensorType::MANUAL) {
vars.sensors.outdoor.connected = false;
}
}
this->yield();
this->emergency();
this->ledStatus();
this->cascadeControl();
this->externalPump();
this->yield();
@@ -160,7 +176,7 @@ protected:
this->restartSignalTime = millis();
}
if (!settings.system.debug) {
if (settings.system.logLevel < TinyLogger::Level::VERBOSE) {
return;
}
@@ -189,42 +205,22 @@ protected:
}
void emergency() {
if (!settings.emergency.enable && vars.states.emergency) {
this->emergencyDetected = false;
vars.states.emergency = false;
Log.sinfoln(FPSTR(L_MAIN), F("Emergency mode disabled"));
}
if (!settings.emergency.enable) {
return;
}
// flags
uint8_t emergencyFlags = 0b00000000;
// set network flag
if (settings.emergency.onNetworkFault && !network->isConnected()) {
// set outdoor sensor flag
if (settings.equitherm.enable && !vars.sensors.outdoor.connected) {
emergencyFlags |= 0b00000001;
}
// set mqtt flag
if (settings.emergency.onMqttFault && (!tMqtt->isEnabled() || !tMqtt->isConnected())) {
// set indoor sensor flag
if (!settings.equitherm.enable && settings.pid.enable && !vars.sensors.indoor.connected) {
emergencyFlags |= 0b00000010;
}
// set outdoor sensor flag
if (settings.sensors.outdoor.type == SensorType::DS18B20 || settings.sensors.outdoor.type == SensorType::BLUETOOTH) {
if (settings.emergency.onOutdoorSensorDisconnect && !vars.sensors.outdoor.connected) {
emergencyFlags |= 0b00000100;
}
}
// set indoor sensor flag
if (settings.sensors.indoor.type == SensorType::DS18B20 || settings.sensors.indoor.type == SensorType::BLUETOOTH) {
if (settings.emergency.onIndoorSensorDisconnect && !vars.sensors.indoor.connected) {
emergencyFlags |= 0b00001000;
}
// set indoor sensor flag for OT native heating control
if (settings.opentherm.nativeHeatingControl && !vars.sensors.indoor.connected) {
emergencyFlags |= 0b00000100;
}
// if any flags is true
@@ -250,7 +246,7 @@ protected:
} else if (!this->emergencyDetected && vars.states.emergency) {
// disable emergency
if (millis() - this->emergencyFlipTime > 30000) {
if (millis() - this->emergencyFlipTime > (settings.emergency.tresholdTime * 1000)) {
vars.states.emergency = false;
Log.sinfoln(FPSTR(L_MAIN), F("Emergency mode disabled"));
}
@@ -337,6 +333,170 @@ protected:
this->blinker->tick();
}
void cascadeControl() {
static uint8_t configuredInputGpio = GPIO_IS_NOT_CONFIGURED;
static uint8_t configuredOutputGpio = GPIO_IS_NOT_CONFIGURED;
static bool inputTempValue = false;
static unsigned long inputChangedTs = 0;
static bool outputTempValue = false;
static unsigned long outputChangedTs = 0;
// input
if (settings.cascadeControl.input.enable) {
if (settings.cascadeControl.input.gpio != configuredInputGpio) {
if (configuredInputGpio != GPIO_IS_NOT_CONFIGURED) {
pinMode(configuredInputGpio, OUTPUT);
digitalWrite(configuredInputGpio, LOW);
Log.sinfoln(FPSTR(L_CASCADE_INPUT), F("Deinitialized on GPIO %hhu"), configuredInputGpio);
}
if (GPIO_IS_VALID(settings.cascadeControl.input.gpio)) {
configuredInputGpio = settings.cascadeControl.input.gpio;
pinMode(configuredInputGpio, INPUT);
Log.sinfoln(FPSTR(L_CASCADE_INPUT), F("Initialized on GPIO %hhu"), configuredInputGpio);
} else if (configuredInputGpio != GPIO_IS_NOT_CONFIGURED) {
configuredInputGpio = GPIO_IS_NOT_CONFIGURED;
Log.swarningln(FPSTR(L_CASCADE_INPUT), F("Failed initialize: GPIO %hhu is not valid!"), configuredInputGpio);
}
}
if (configuredInputGpio != GPIO_IS_NOT_CONFIGURED) {
bool value;
if (digitalRead(configuredInputGpio) == HIGH) {
value = true ^ settings.cascadeControl.input.invertState;
} else {
value = false ^ settings.cascadeControl.input.invertState;
}
if (value != vars.cascadeControl.input) {
if (value != inputTempValue) {
inputTempValue = value;
inputChangedTs = millis();
} else if (millis() - inputChangedTs >= settings.cascadeControl.input.thresholdTime * 1000u) {
vars.cascadeControl.input = value;
Log.sinfoln(
FPSTR(L_CASCADE_INPUT),
F("State changed to %s"),
value ? F("TRUE") : F("FALSE")
);
}
} else if (value != inputTempValue) {
inputTempValue = value;
}
}
}
if (!settings.cascadeControl.input.enable || configuredInputGpio == GPIO_IS_NOT_CONFIGURED) {
if (!vars.cascadeControl.input) {
vars.cascadeControl.input = true;
Log.sinfoln(
FPSTR(L_CASCADE_INPUT),
F("Disabled, state changed to %s"),
vars.cascadeControl.input ? F("TRUE") : F("FALSE")
);
}
}
// output
if (settings.cascadeControl.output.enable) {
if (settings.cascadeControl.output.gpio != configuredOutputGpio) {
if (configuredOutputGpio != GPIO_IS_NOT_CONFIGURED) {
pinMode(configuredOutputGpio, OUTPUT);
digitalWrite(configuredOutputGpio, LOW);
Log.sinfoln(FPSTR(L_CASCADE_OUTPUT), F("Deinitialized on GPIO %hhu"), configuredOutputGpio);
}
if (GPIO_IS_VALID(settings.cascadeControl.output.gpio)) {
configuredOutputGpio = settings.cascadeControl.output.gpio;
pinMode(configuredOutputGpio, OUTPUT);
digitalWrite(
configuredOutputGpio,
settings.cascadeControl.output.invertState
? HIGH
: LOW
);
Log.sinfoln(FPSTR(L_CASCADE_OUTPUT), F("Initialized on GPIO %hhu"), configuredOutputGpio);
} else if (configuredOutputGpio != GPIO_IS_NOT_CONFIGURED) {
configuredOutputGpio = GPIO_IS_NOT_CONFIGURED;
Log.swarningln(FPSTR(L_CASCADE_OUTPUT), F("Failed initialize: GPIO %hhu is not valid!"), configuredOutputGpio);
}
}
if (configuredOutputGpio != GPIO_IS_NOT_CONFIGURED) {
bool value = false;
if (settings.cascadeControl.output.onFault && vars.states.fault) {
value = true;
} else if (settings.cascadeControl.output.onLossConnection && !vars.states.otStatus) {
value = true;
} else if (settings.cascadeControl.output.onEnabledHeating && settings.heating.enable && vars.cascadeControl.input) {
value = true;
}
if (value != vars.cascadeControl.output) {
if (value != outputTempValue) {
outputTempValue = value;
outputChangedTs = millis();
} else if (millis() - outputChangedTs >= settings.cascadeControl.output.thresholdTime * 1000u) {
vars.cascadeControl.output = value;
digitalWrite(
configuredOutputGpio,
vars.cascadeControl.output ^ settings.cascadeControl.output.invertState
? HIGH
: LOW
);
Log.sinfoln(
FPSTR(L_CASCADE_OUTPUT),
F("State changed to %s"),
value ? F("TRUE") : F("FALSE")
);
}
} else if (value != outputTempValue) {
outputTempValue = value;
}
}
}
if (!settings.cascadeControl.output.enable || configuredOutputGpio == GPIO_IS_NOT_CONFIGURED) {
if (vars.cascadeControl.output) {
vars.cascadeControl.output = false;
if (configuredOutputGpio != GPIO_IS_NOT_CONFIGURED) {
digitalWrite(
configuredOutputGpio,
vars.cascadeControl.output ^ settings.cascadeControl.output.invertState
? HIGH
: LOW
);
}
Log.sinfoln(
FPSTR(L_CASCADE_OUTPUT),
F("Disabled, state changed to %s"),
vars.cascadeControl.output ? F("TRUE") : F("FALSE")
);
}
}
}
void externalPump() {
static uint8_t configuredGpio = GPIO_IS_NOT_CONFIGURED;

View File

@@ -72,7 +72,7 @@ protected:
MqttWriter* writer = nullptr;
UnitSystem currentUnitSystem = UnitSystem::METRIC;
bool currentHomeAssistantDiscovery = false;
unsigned short readyForSendTime = 15000;
unsigned short readyForSendTime = 30000;
unsigned long lastReconnectTime = 0;
unsigned long connectedTime = 0;
unsigned long disconnectedTime = 0;
@@ -270,7 +270,7 @@ protected:
return;
}
if (settings.system.debug) {
if (settings.system.logLevel >= TinyLogger::Level::TRACE) {
Log.strace(FPSTR(L_MQTT_MSG), F("Topic: %s\r\n> "), topic);
if (Log.lock()) {
for (size_t i = 0; i < length; i++) {
@@ -322,47 +322,58 @@ protected:
void publishHaEntities() {
// heating
this->haHelper->publishSwitchHeating(false);
this->haHelper->publishSwitchHeatingTurbo();
this->haHelper->publishNumberHeatingHysteresis(settings.system.unitSystem);
this->haHelper->publishSwitchHeatingTurbo(false);
this->haHelper->publishInputHeatingHysteresis(settings.system.unitSystem);
this->haHelper->publishInputHeatingTurboFactor(false);
this->haHelper->publishInputHeatingMinTemp(settings.system.unitSystem);
this->haHelper->publishInputHeatingMaxTemp(settings.system.unitSystem);
this->haHelper->publishSensorHeatingSetpoint(settings.system.unitSystem, false);
this->haHelper->publishSensorBoilerHeatingMinTemp(settings.system.unitSystem, false);
this->haHelper->publishSensorBoilerHeatingMaxTemp(settings.system.unitSystem, false);
this->haHelper->publishNumberHeatingMinTemp(settings.system.unitSystem, false);
this->haHelper->publishNumberHeatingMaxTemp(settings.system.unitSystem, false);
this->haHelper->publishNumberHeatingMaxModulation(false);
// pid
this->haHelper->publishSwitchPid();
this->haHelper->publishNumberPidFactorP();
this->haHelper->publishNumberPidFactorI();
this->haHelper->publishNumberPidFactorD();
this->haHelper->publishNumberPidDt(false);
this->haHelper->publishNumberPidMinTemp(settings.system.unitSystem, false);
this->haHelper->publishNumberPidMaxTemp(settings.system.unitSystem, false);
this->haHelper->publishInputPidFactorP(false);
this->haHelper->publishInputPidFactorI(false);
this->haHelper->publishInputPidFactorD(false);
this->haHelper->publishInputPidDt(false);
this->haHelper->publishInputPidMinTemp(settings.system.unitSystem, false);
this->haHelper->publishInputPidMaxTemp(settings.system.unitSystem, false);
// equitherm
this->haHelper->publishSwitchEquitherm();
this->haHelper->publishNumberEquithermFactorN();
this->haHelper->publishNumberEquithermFactorK();
this->haHelper->publishNumberEquithermFactorT();
this->haHelper->publishInputEquithermFactorN(false);
this->haHelper->publishInputEquithermFactorK(false);
this->haHelper->publishInputEquithermFactorT(false);
// states
this->haHelper->publishBinSensorStatus();
this->haHelper->publishBinSensorOtStatus();
this->haHelper->publishBinSensorHeating();
this->haHelper->publishBinSensorFlame();
this->haHelper->publishBinSensorFault();
this->haHelper->publishBinSensorDiagnostic();
this->haHelper->publishStateStatus();
this->haHelper->publishStateEmergency();
this->haHelper->publishStateOtStatus();
this->haHelper->publishStateHeating();
this->haHelper->publishStateFlame();
this->haHelper->publishStateFault();
this->haHelper->publishStateDiagnostic();
this->haHelper->publishStateExtPump(false);
// sensors
this->haHelper->publishSensorModulation(false);
this->haHelper->publishSensorModulation();
this->haHelper->publishSensorPressure(settings.system.unitSystem, false);
this->haHelper->publishSensorPower();
this->haHelper->publishSensorFaultCode();
this->haHelper->publishSensorDiagnosticCode();
this->haHelper->publishSensorRssi(false);
this->haHelper->publishSensorUptime(false);
this->haHelper->publishOutdoorSensorConnected();
this->haHelper->publishOutdoorSensorRssi(false);
this->haHelper->publishOutdoorSensorBattery(false);
this->haHelper->publishOutdoorSensorHumidity(false);
this->haHelper->publishIndoorSensorConnected();
this->haHelper->publishIndoorSensorRssi(false);
this->haHelper->publishIndoorSensorBattery(false);
this->haHelper->publishIndoorSensorHumidity(false);
// temperatures
this->haHelper->publishNumberIndoorTemp(settings.system.unitSystem);
this->haHelper->publishSensorHeatingTemp(settings.system.unitSystem);
this->haHelper->publishSensorHeatingReturnTemp(settings.system.unitSystem, false);
this->haHelper->publishSensorExhaustTemp(settings.system.unitSystem, false);
@@ -400,21 +411,21 @@ protected:
this->haHelper->publishSwitchDhw(false);
this->haHelper->publishSensorBoilerDhwMinTemp(settings.system.unitSystem, false);
this->haHelper->publishSensorBoilerDhwMaxTemp(settings.system.unitSystem, false);
this->haHelper->publishNumberDhwMinTemp(settings.system.unitSystem, false);
this->haHelper->publishNumberDhwMaxTemp(settings.system.unitSystem, false);
this->haHelper->publishBinSensorDhw();
this->haHelper->publishInputDhwMinTemp(settings.system.unitSystem);
this->haHelper->publishInputDhwMaxTemp(settings.system.unitSystem);
this->haHelper->publishStateDhw();
this->haHelper->publishSensorDhwTemp(settings.system.unitSystem);
this->haHelper->publishSensorDhwFlowRate(settings.system.unitSystem, false);
this->haHelper->publishSensorDhwFlowRate(settings.system.unitSystem);
} else {
this->haHelper->deleteSwitchDhw();
this->haHelper->deleteSensorBoilerDhwMinTemp();
this->haHelper->deleteSensorBoilerDhwMaxTemp();
this->haHelper->deleteNumberDhwMinTemp();
this->haHelper->deleteNumberDhwMaxTemp();
this->haHelper->deleteBinSensorDhw();
this->haHelper->deleteInputDhwMinTemp();
this->haHelper->deleteInputDhwMaxTemp();
this->haHelper->deleteStateDhw();
this->haHelper->deleteSensorDhwTemp();
this->haHelper->deleteNumberDhwTarget();
this->haHelper->deleteInputDhwTarget();
this->haHelper->deleteClimateDhw();
this->haHelper->deleteSensorDhwFlowRate();
}
@@ -427,7 +438,7 @@ protected:
_heatingMaxTemp = heatingMaxTemp;
_noRegulators = noRegulators;
this->haHelper->publishNumberHeatingTarget(settings.system.unitSystem, heatingMinTemp, heatingMaxTemp, false);
this->haHelper->publishInputHeatingTarget(settings.system.unitSystem, heatingMinTemp, heatingMaxTemp, false);
this->haHelper->publishClimateHeating(
settings.system.unitSystem,
heatingMinTemp,
@@ -442,7 +453,7 @@ protected:
_dhwMinTemp = settings.dhw.minTemp;
_dhwMaxTemp = settings.dhw.maxTemp;
this->haHelper->publishNumberDhwTarget(settings.system.unitSystem, settings.dhw.minTemp, settings.dhw.maxTemp, false);
this->haHelper->publishInputDhwTarget(settings.system.unitSystem, settings.dhw.minTemp, settings.dhw.maxTemp, false);
this->haHelper->publishClimateDhw(settings.system.unitSystem, settings.dhw.minTemp, settings.dhw.maxTemp);
published = true;
@@ -453,9 +464,9 @@ protected:
if (editableOutdoorTemp) {
this->haHelper->deleteSensorOutdoorTemp();
this->haHelper->publishNumberOutdoorTemp(settings.system.unitSystem);
this->haHelper->publishInputOutdoorTemp(settings.system.unitSystem);
} else {
this->haHelper->deleteNumberOutdoorTemp();
this->haHelper->deleteInputOutdoorTemp();
this->haHelper->publishSensorOutdoorTemp(settings.system.unitSystem);
}
@@ -467,9 +478,9 @@ protected:
if (editableIndoorTemp) {
this->haHelper->deleteSensorIndoorTemp();
this->haHelper->publishNumberIndoorTemp(settings.system.unitSystem);
this->haHelper->publishInputIndoorTemp(settings.system.unitSystem);
} else {
this->haHelper->deleteNumberIndoorTemp();
this->haHelper->deleteInputIndoorTemp();
this->haHelper->publishSensorIndoorTemp(settings.system.unitSystem);
}

View File

@@ -22,16 +22,12 @@ protected:
bool isInitialized = false;
unsigned long initializedTime = 0;
unsigned int initializedMemberIdCode = 0;
byte dhwFlowRateMultiplier = 1;
byte pressureMultiplier = 1;
bool pump = true;
unsigned long lastSuccessResponse = 0;
unsigned long prevUpdateNonEssentialVars = 0;
unsigned long dhwSetTempTime = 0;
unsigned long heatingSetTempTime = 0;
bool heatingBlocking = false;
byte configuredRxLedGpio = GPIO_IS_NOT_CONFIGURED;
byte configuredFaultStateGpio = GPIO_IS_NOT_CONFIGURED;
bool faultState = false;
#if defined(ARDUINO_ARCH_ESP32)
const char* getTaskName() override {
@@ -63,7 +59,12 @@ protected:
}
if (!GPIO_IS_VALID(settings.opentherm.inGpio) || !GPIO_IS_VALID(settings.opentherm.outGpio)) {
Log.swarningln(FPSTR(L_OT), F("Not started. GPIO IN: %hhu or GPIO OUT: %hhu is not valid"), settings.opentherm.inGpio, settings.opentherm.outGpio);
Log.swarningln(
FPSTR(L_OT),
F("Not started. GPIO IN: %hhu or GPIO OUT: %hhu is not valid"),
settings.opentherm.inGpio,
settings.opentherm.outGpio
);
return;
}
@@ -135,28 +136,10 @@ protected:
}
}
// Fault state setup
if (settings.opentherm.faultStateGpio != this->configuredFaultStateGpio) {
if (this->configuredFaultStateGpio != GPIO_IS_NOT_CONFIGURED) {
digitalWrite(this->configuredFaultStateGpio, LOW);
}
if (GPIO_IS_VALID(settings.opentherm.faultStateGpio)) {
this->configuredFaultStateGpio = settings.opentherm.faultStateGpio;
this->faultState = false ^ settings.opentherm.invertFaultState ? HIGH : LOW;
pinMode(this->configuredFaultStateGpio, OUTPUT);
digitalWrite(
this->configuredFaultStateGpio,
this->faultState
);
} else if (this->configuredFaultStateGpio != GPIO_IS_NOT_CONFIGURED) {
this->configuredFaultStateGpio = GPIO_IS_NOT_CONFIGURED;
}
}
bool heatingEnabled = (vars.states.emergency || settings.heating.enable) && this->pump && this->isReady();
bool heatingEnabled = (vars.states.emergency || settings.heating.enable)
&& vars.cascadeControl.input
&& this->isReady()
&& !this->heatingBlocking;
bool heatingCh2Enabled = settings.opentherm.heatingCh2Enabled;
if (settings.opentherm.heatingCh1ToCh2) {
heatingCh2Enabled = heatingEnabled;
@@ -165,6 +148,16 @@ protected:
heatingCh2Enabled = settings.opentherm.dhwPresent && settings.dhw.enable;
}
// Set boiler status LB
// Some boilers require this, although this is against protocol
uint8_t statusLb = 0;
// Immergas fix
// https://arduino.ru/forum/programmirovanie/termostat-opentherm-na-esp8266?page=15#comment-649392
if (settings.opentherm.immergasFix) {
statusLb = 0xCA;
}
unsigned long response = this->instance->setBoilerStatus(
heatingEnabled,
settings.opentherm.dhwPresent && settings.dhw.enable,
@@ -172,11 +165,16 @@ protected:
settings.opentherm.nativeHeatingControl,
heatingCh2Enabled,
settings.opentherm.summerWinterMode,
settings.opentherm.dhwBlocking
settings.opentherm.dhwBlocking,
statusLb
);
if (!CustomOpenTherm::isValidResponse(response)) {
Log.swarningln(FPSTR(L_OT), F("Invalid response after setBoilerStatus: %s"), CustomOpenTherm::statusToString(this->instance->getLastResponseStatus()));
if (!CustomOpenTherm::isValidResponse(response) || !CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::Status)) {
Log.swarningln(
FPSTR(L_OT),
F("Failed receive boiler status: %s"),
CustomOpenTherm::statusToString(this->instance->getLastResponseStatus())
);
}
if (!vars.states.otStatus && millis() - this->lastSuccessResponse < 1150) {
@@ -187,6 +185,14 @@ protected:
} else if (vars.states.otStatus && millis() - this->lastSuccessResponse > 1150) {
Log.swarningln(FPSTR(L_OT), F("Disconnected"));
if (settings.sensors.outdoor.type == SensorType::BOILER_OUTDOOR) {
vars.sensors.outdoor.connected = false;
}
if (settings.sensors.indoor.type == SensorType::BOILER_RETURN) {
vars.sensors.indoor.connected = false;
}
vars.states.otStatus = false;
this->isInitialized = false;
}
@@ -199,16 +205,6 @@ protected:
vars.states.fault = false;
vars.states.diagnostic = false;
// Force fault state = on
if (this->configuredFaultStateGpio != GPIO_IS_NOT_CONFIGURED) {
bool fState = true ^ settings.opentherm.invertFaultState ? HIGH : LOW;
if (fState != this->faultState) {
this->faultState = fState;
digitalWrite(this->configuredFaultStateGpio, this->faultState);
}
}
return;
}
@@ -217,8 +213,6 @@ protected:
this->isInitialized = true;
this->initializedTime = millis();
this->initializedMemberIdCode = settings.opentherm.memberIdCode;
this->dhwFlowRateMultiplier = 1;
this->pressureMultiplier = 1;
this->initialize();
}
@@ -234,56 +228,88 @@ protected:
vars.states.fault = CustomOpenTherm::isFault(response);
vars.states.diagnostic = CustomOpenTherm::isDiagnostic(response);
// Fault state
if (this->configuredFaultStateGpio != GPIO_IS_NOT_CONFIGURED) {
bool fState = vars.states.fault ^ settings.opentherm.invertFaultState ? HIGH : LOW;
if (fState != this->faultState) {
this->faultState = fState;
digitalWrite(this->configuredFaultStateGpio, this->faultState);
}
}
Log.snoticeln(
FPSTR(L_OT),
F("Received boiler status. Heating: %hhu; DHW: %hhu; flame: %hhu; fault: %hhu; diag: %hhu"),
vars.states.heating, vars.states.dhw, vars.states.flame, vars.states.fault, vars.states.diagnostic
);
// These parameters will be updated every minute
if (millis() - this->prevUpdateNonEssentialVars > 60000) {
if (!heatingEnabled && settings.opentherm.modulationSyncWithHeating) {
if (setMaxModulationLevel(0)) {
Log.snoticeln(FPSTR(L_OT_HEATING), F("Set max modulation 0% (off)"));
if (this->updateMinModulationLevel()) {
Log.snoticeln(
FPSTR(L_OT),
F("Received min modulation: %hhu%%, max power: %hhu kW"),
vars.parameters.minModulation,
vars.parameters.maxPower
);
if (settings.opentherm.maxModulation < vars.parameters.minModulation) {
settings.opentherm.maxModulation = vars.parameters.minModulation;
fsSettings.update();
Log.swarningln(FPSTR(L_SETTINGS_OT), F("Updated min modulation: %hhu%%"), settings.opentherm.maxModulation);
}
} else {
Log.swarningln(FPSTR(L_OT_HEATING), F("Failed set max modulation 0% (off)"));
if (fabsf(settings.opentherm.maxPower) < 0.1f && vars.parameters.maxPower > 0) {
settings.opentherm.maxPower = vars.parameters.maxPower;
if (vars.parameters.minModulation > 0) {
settings.opentherm.minPower = (vars.parameters.minModulation / 100.0f) * vars.parameters.maxPower;
}
fsSettings.update();
Log.swarningln(FPSTR(L_SETTINGS_OT), F("Updated max power: %.2f kW"), settings.opentherm.maxPower);
}
} else {
if (setMaxModulationLevel(settings.heating.maxModulation)) {
Log.snoticeln(FPSTR(L_OT_HEATING), F("Set max modulation %hhu%%"), settings.heating.maxModulation);
Log.swarningln(FPSTR(L_OT), F("Failed receive min modulation and max power"));
}
if (!heatingEnabled && settings.opentherm.modulationSyncWithHeating) {
if (this->setMaxModulationLevel(0)) {
Log.snoticeln(FPSTR(L_OT), F("Set max modulation: 0% (off)"));
} else {
Log.swarningln(FPSTR(L_OT_HEATING), F("Failed set max modulation %hhu%%"), settings.heating.maxModulation);
Log.swarningln(FPSTR(L_OT), F("Failed set max modulation: 0% (off)"));
}
} else {
if (this->setMaxModulationLevel(settings.opentherm.maxModulation)) {
Log.snoticeln(FPSTR(L_OT), F("Set max modulation: %hhu%%"), settings.opentherm.maxModulation);
} else {
Log.swarningln(FPSTR(L_OT), F("Failed set max modulation: %hhu%%"), settings.opentherm.maxModulation);
}
}
// Get DHW min/max temp (if necessary)
if (settings.opentherm.dhwPresent && settings.opentherm.getMinMaxTemp) {
if (updateMinMaxDhwTemp()) {
if (this->updateMinMaxDhwTemp()) {
Log.snoticeln(
FPSTR(L_OT_DHW),
F("Received min temp: %hhu, max temp: %hhu"),
vars.parameters.dhwMinTemp,
vars.parameters.dhwMaxTemp
);
if (settings.dhw.minTemp < vars.parameters.dhwMinTemp) {
settings.dhw.minTemp = vars.parameters.dhwMinTemp;
fsSettings.update();
Log.snoticeln(FPSTR(L_OT_DHW), F("Updated min temp: %hhu"), settings.dhw.minTemp);
Log.swarningln(FPSTR(L_SETTINGS_DHW), F("Updated min temp: %hhu"), settings.dhw.minTemp);
}
if (settings.dhw.maxTemp > vars.parameters.dhwMaxTemp) {
settings.dhw.maxTemp = vars.parameters.dhwMaxTemp;
fsSettings.update();
Log.snoticeln(FPSTR(L_OT_DHW), F("Updated max temp: %hhu"), settings.dhw.maxTemp);
Log.swarningln(FPSTR(L_SETTINGS_DHW), F("Updated max temp: %hhu"), settings.dhw.maxTemp);
}
} else {
vars.parameters.dhwMinTemp = convertTemp(DEFAULT_DHW_MIN_TEMP, UnitSystem::METRIC, settings.system.unitSystem);
vars.parameters.dhwMaxTemp = convertTemp(DEFAULT_DHW_MAX_TEMP, UnitSystem::METRIC, settings.system.unitSystem);
Log.swarningln(FPSTR(L_OT_DHW), F("Failed get min/max temp"));
Log.swarningln(FPSTR(L_OT_DHW), F("Failed receive min/max temp"));
}
if (settings.dhw.minTemp >= settings.dhw.maxTemp) {
@@ -296,24 +322,31 @@ protected:
// Get heating min/max temp
if (settings.opentherm.getMinMaxTemp) {
if (updateMinMaxHeatingTemp()) {
if (this->updateMinMaxHeatingTemp()) {
Log.snoticeln(
FPSTR(L_OT_HEATING),
F("Received min temp: %hhu, max temp: %hhu"),
vars.parameters.heatingMinTemp,
vars.parameters.heatingMaxTemp
);
if (settings.heating.minTemp < vars.parameters.heatingMinTemp) {
settings.heating.minTemp = vars.parameters.heatingMinTemp;
fsSettings.update();
Log.snoticeln(FPSTR(L_OT_HEATING), F("Updated min temp: %hhu"), settings.heating.minTemp);
Log.swarningln(FPSTR(L_SETTINGS_HEATING), F("Updated min temp: %hhu"), settings.heating.minTemp);
}
if (settings.heating.maxTemp > vars.parameters.heatingMaxTemp) {
settings.heating.maxTemp = vars.parameters.heatingMaxTemp;
fsSettings.update();
Log.snoticeln(FPSTR(L_OT_HEATING), F("Updated max temp: %hhu"), settings.heating.maxTemp);
Log.swarningln(FPSTR(L_SETTINGS_HEATING), F("Updated max temp: %hhu"), settings.heating.maxTemp);
}
} else {
vars.parameters.heatingMinTemp = convertTemp(DEFAULT_HEATING_MIN_TEMP, UnitSystem::METRIC, settings.system.unitSystem);
vars.parameters.heatingMaxTemp = convertTemp(DEFAULT_HEATING_MAX_TEMP, UnitSystem::METRIC, settings.system.unitSystem);
Log.swarningln(FPSTR(L_OT_HEATING), F("Failed get min/max temp"));
Log.swarningln(FPSTR(L_OT_HEATING), F("Failed receive min/max temp"));
}
}
@@ -323,20 +356,75 @@ protected:
fsSettings.update();
}
// Get outdoor temp (if necessary)
if (settings.sensors.outdoor.type == SensorType::BOILER) {
updateOutsideTemp();
}
// Get fault code (if necessary)
if (vars.states.fault) {
updateFaultCode();
if (this->updateFaultCode()) {
Log.snoticeln(
FPSTR(L_OT),
F("Received fault code: %hhu (0x%02X)"),
vars.sensors.faultCode,
vars.sensors.faultCode
);
} else {
vars.sensors.faultCode = 0;
Log.swarningln(FPSTR(L_OT), F("Failed receive fault code"));
}
} else if (vars.sensors.faultCode != 0) {
vars.sensors.faultCode = 0;
}
updatePressure();
// Get diagnostic code (if necessary)
if (vars.states.fault || vars.states.diagnostic) {
if (this->updateDiagCode()) {
Log.snoticeln(
FPSTR(L_OT),
F("Received diag code: %hu (0x%02X)"),
vars.sensors.diagnosticCode,
vars.sensors.diagnosticCode
);
} else {
vars.sensors.diagnosticCode = 0;
Log.swarningln(FPSTR(L_OT), F("Failed receive diag code"));
}
} else if (vars.sensors.diagnosticCode != 0) {
vars.sensors.diagnosticCode = 0;
}
// If filtering is disabled, then it is enough to
// update these parameters once a minute
if (!settings.opentherm.filterNumValues.enable) {
// Get outdoor temp (if necessary)
if (settings.sensors.outdoor.type == SensorType::BOILER_OUTDOOR) {
if (this->updateOutdoorTemp()) {
if (!vars.sensors.outdoor.connected) {
vars.sensors.outdoor.connected = true;
}
Log.snoticeln(FPSTR(L_OT), F("Received outdoor temp: %.2f"), vars.temperatures.outdoor);
} else {
if (vars.sensors.outdoor.connected) {
vars.sensors.outdoor.connected = false;
}
Log.swarningln(FPSTR(L_OT), F("Failed receive outdoor temp"));
}
}
// Get pressure
if (this->updatePressure()) {
Log.snoticeln(FPSTR(L_OT), F("Received pressure: %.2f"), vars.sensors.pressure);
} else {
Log.swarningln(FPSTR(L_OT), F("Failed receive pressure"));
}
}
this->prevUpdateNonEssentialVars = millis();
}
@@ -344,16 +432,48 @@ protected:
// Get current modulation level (if necessary)
if (vars.states.flame) {
updateModulationLevel();
if (this->updateModulationLevel()) {
if (settings.opentherm.maxPower > 0.1f) {
float modulatedPower = settings.opentherm.maxPower - settings.opentherm.minPower;
vars.sensors.power = settings.opentherm.minPower + (modulatedPower / 100.0f * vars.sensors.modulation);
} else {
vars.sensors.power = 0.0f;
}
Log.snoticeln(
FPSTR(L_OT),
F("Received modulation level: %.2f%%, power: %.2f of %.2f kW (min: %.2f kW)"),
vars.sensors.modulation,
vars.sensors.power,
settings.opentherm.maxPower,
settings.opentherm.minPower
);
} else {
Log.swarningln(FPSTR(L_OT), F("Failed receive modulation level"));
}
} else {
vars.sensors.modulation = 0;
vars.sensors.power = 0;
}
// Update DHW sensors (if necessary)
if (settings.opentherm.dhwPresent) {
updateDhwTemp();
updateDhwFlowRate();
if (this->updateDhwTemp()) {
Log.snoticeln(FPSTR(L_OT_DHW), F("Received temp: %.2f"), vars.temperatures.dhw);
} else {
Log.swarningln(FPSTR(L_OT_DHW), F("Failed receive temp"));
}
if (this->updateDhwFlowRate()) {
Log.snoticeln(FPSTR(L_OT_DHW), F("Received flow rate: %.2f"), vars.sensors.dhwFlowRate);
} else {
Log.swarningln(FPSTR(L_OT_DHW), F("Failed receive flow rate"));
}
} else {
vars.temperatures.dhw = 0.0f;
@@ -361,13 +481,70 @@ protected:
}
// Get current heating temp
updateHeatingTemp();
if (this->updateHeatingTemp()) {
Log.snoticeln(FPSTR(L_OT_HEATING), F("Received temp: %.2f"), vars.temperatures.heating);
} else {
Log.swarningln(FPSTR(L_OT_HEATING), F("Failed receive temp"));
}
// Get heating return temp
updateHeatingReturnTemp();
if (this->updateHeatingReturnTemp()) {
if (settings.sensors.indoor.type == SensorType::BOILER_RETURN) {
vars.temperatures.indoor = settings.sensors.outdoor.offset + vars.temperatures.heatingReturn;
if (!vars.sensors.outdoor.connected) {
vars.sensors.indoor.connected = true;
}
}
Log.snoticeln(FPSTR(L_OT_HEATING), F("Received return temp: %.2f"), vars.temperatures.heatingReturn);
} else {
if (settings.sensors.indoor.type == SensorType::BOILER_RETURN && vars.sensors.outdoor.connected) {
vars.sensors.indoor.connected = false;
}
Log.swarningln(FPSTR(L_OT_HEATING), F("Failed receive return temp"));
}
// Get exhaust temp
updateExhaustTemp();
if (this->updateExhaustTemp()) {
Log.snoticeln(FPSTR(L_OT), F("Received exhaust temp: %.2f"), vars.temperatures.exhaust);
} else {
Log.swarningln(FPSTR(L_OT), F("Failed receive exhaust temp"));
}
// If filtering is enabled, these parameters
// must be updated every time.
if (settings.opentherm.filterNumValues.enable) {
// Get outdoor temp (if necessary)
if (settings.sensors.outdoor.type == SensorType::BOILER_OUTDOOR) {
if (this->updateOutdoorTemp()) {
if (!vars.sensors.outdoor.connected) {
vars.sensors.outdoor.connected = true;
}
Log.snoticeln(FPSTR(L_OT), F("Received outdoor temp: %.2f"), vars.temperatures.outdoor);
} else {
if (vars.sensors.outdoor.connected) {
vars.sensors.outdoor.connected = false;
}
Log.swarningln(FPSTR(L_OT), F("Failed receive outdoor temp"));
}
}
// Get pressure
if (this->updatePressure()) {
Log.snoticeln(FPSTR(L_OT), F("Received pressure: %.2f"), vars.sensors.pressure);
} else {
Log.swarningln(FPSTR(L_OT), F("Failed receive pressure"));
}
}
// Fault reset action
@@ -428,7 +605,7 @@ protected:
float indoorTemp = 0.0f;
float convertedTemp = 0.0f;
if (!vars.states.emergency || settings.sensors.indoor.type != SensorType::MANUAL) {
if (vars.sensors.indoor.connected) {
indoorTemp = vars.temperatures.indoor;
convertedTemp = convertTemp(indoorTemp, settings.system.unitSystem, settings.opentherm.unitSystem);
}
@@ -459,11 +636,6 @@ protected:
}
}
// force enable pump
if (!this->pump) {
this->pump = true;
}
} else {
// Update heating temp
if (heatingEnabled && (this->needSetHeatingTemp() || fabs(vars.parameters.heatingSetpoint - currentHeatingTemp) > 0.0001f)) {
@@ -495,61 +667,71 @@ protected:
}
}
}
}
// Hysteresis
// Only if enabled PID or/and Equitherm or Native heating control via OT
bool useHyst = false;
if (settings.heating.hysteresis > 0.01f && vars.sensors.indoor.connected) {
useHyst = settings.equitherm.enable || settings.pid.enable || settings.opentherm.nativeHeatingControl;
}
// Hysteresis
// Only if enabled PID or/and Equitherm
if (settings.heating.hysteresis > 0 && (!vars.states.emergency || settings.emergency.usePid) && (settings.equitherm.enable || settings.pid.enable)) {
float halfHyst = settings.heating.hysteresis / 2;
if (this->pump && vars.temperatures.indoor - settings.heating.target + 0.0001f >= halfHyst) {
this->pump = false;
if (useHyst) {
if (!this->heatingBlocking && vars.temperatures.indoor - settings.heating.target + 0.0001f >= settings.heating.hysteresis) {
this->heatingBlocking = true;
} else if (!this->pump && vars.temperatures.indoor - settings.heating.target - 0.0001f <= -(halfHyst)) {
this->pump = true;
}
} else if (!this->pump) {
this->pump = true;
} else if (this->heatingBlocking && vars.temperatures.indoor - settings.heating.target - 0.0001f <= -(settings.heating.hysteresis)) {
this->heatingBlocking = false;
}
} else if (this->heatingBlocking) {
this->heatingBlocking = false;
}
}
void initialize() {
// Not all boilers support these, only try once when the boiler becomes connected
if (this->updateSlaveVersion()) {
Log.straceln(FPSTR(L_OT), F("Slave version: %u, type: %u"), vars.parameters.slaveVersion, vars.parameters.slaveType);
Log.snoticeln(FPSTR(L_OT), F("Received slave version: %u, type: %u"), vars.parameters.slaveVersion, vars.parameters.slaveType);
} else {
Log.swarningln(FPSTR(L_OT), F("Get slave version failed"));
Log.swarningln(FPSTR(L_OT), F("Failed receive slave version"));
}
// 0x013F
if (this->setMasterVersion(0x3F, 0x01)) {
Log.straceln(FPSTR(L_OT), F("Master version: %u, type: %u"), vars.parameters.masterVersion, vars.parameters.masterType);
Log.snoticeln(FPSTR(L_OT), F("Set master version: %u, type: %u"), vars.parameters.masterVersion, vars.parameters.masterType);
} else {
Log.swarningln(FPSTR(L_OT), F("Set master version failed"));
Log.swarningln(FPSTR(L_OT), F("Failed set master version"));
}
if (this->updateSlaveOtVersion()) {
Log.straceln(FPSTR(L_OT), F("Slave OT version: %f"), vars.parameters.slaveOtVersion);
Log.snoticeln(FPSTR(L_OT), F("Received slave OT version: %f"), vars.parameters.slaveOtVersion);
} else {
Log.swarningln(FPSTR(L_OT), F("Get slave OT version failed"));
Log.swarningln(FPSTR(L_OT), F("Failed receive slave OT version"));
}
if (this->setMasterOtVersion(2.2f)) {
Log.snoticeln(FPSTR(L_OT), F("Set master OT version: %f"), vars.parameters.masterOtVersion);
} else {
Log.swarningln(FPSTR(L_OT), F("Failed set master OT version"));
}
if (this->updateSlaveConfig()) {
Log.straceln(FPSTR(L_OT), F("Slave member id: %u, flags: %u"), vars.parameters.slaveMemberId, vars.parameters.slaveFlags);
Log.snoticeln(FPSTR(L_OT), F("Received slave member id: %u, flags: %u"), vars.parameters.slaveMemberId, vars.parameters.slaveFlags);
} else {
Log.swarningln(FPSTR(L_OT), F("Get slave config failed"));
Log.swarningln(FPSTR(L_OT), F("Failed receive slave config"));
}
if (this->setMasterConfig(settings.opentherm.memberIdCode & 0xFF, (settings.opentherm.memberIdCode & 0xFFFF) >> 8)) {
Log.straceln(FPSTR(L_OT), F("Master member id: %u, flags: %u"), vars.parameters.masterMemberId, vars.parameters.masterFlags);
Log.snoticeln(FPSTR(L_OT), F("Set master member id: %u, flags: %u"), vars.parameters.masterMemberId, vars.parameters.masterFlags);
} else {
Log.swarningln(FPSTR(L_OT), F("Set master config failed"));
Log.swarningln(FPSTR(L_OT), F("Failed set master config"));
}
}
@@ -574,6 +756,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::SConfigSMemberIDcode)) {
return false;
}
vars.parameters.slaveMemberId = response & 0xFF;
@@ -633,7 +818,7 @@ protected:
request
));
return CustomOpenTherm::isValidResponse(response);
return CustomOpenTherm::isValidResponse(response) && CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::MConfigMMemberIDcode);
}
bool setMaxModulationLevel(byte value) {
@@ -645,6 +830,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::MaxRelModLevelSetting)) {
return false;
}
vars.parameters.maxModulation = CustomOpenTherm::getFloat(response);
@@ -660,6 +848,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::OpenThermVersionSlave)) {
return false;
}
vars.parameters.slaveOtVersion = CustomOpenTherm::getFloat(response);
@@ -675,6 +866,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::OpenThermVersionMaster)) {
return false;
}
vars.parameters.masterOtVersion = CustomOpenTherm::getFloat(response);
@@ -691,6 +885,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::SlaveVersion)) {
return false;
}
vars.parameters.slaveVersion = response & 0xFF;
@@ -708,6 +905,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::MasterVersion)) {
return false;
}
vars.parameters.masterVersion = response & 0xFF;
@@ -725,6 +925,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::TdhwSetUBTdhwSetLB)) {
return false;
}
byte minTemp = response & 0xFF;
@@ -749,6 +952,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::MaxTSetUBMaxTSetLB)) {
return false;
}
byte minTemp = response & 0xFF;
@@ -770,10 +976,10 @@ protected:
CustomOpenTherm::temperatureToData(value)
));
return CustomOpenTherm::isValidResponse(response);
return CustomOpenTherm::isValidResponse(response) && CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::MaxTSet);
}
bool updateOutsideTemp() {
bool updateOutdoorTemp() {
unsigned long response = this->instance->sendRequest(CustomOpenTherm::buildRequest(
OpenThermRequestType::READ_DATA,
OpenThermMessageID::Toutside,
@@ -782,14 +988,24 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::Toutside)) {
return false;
}
vars.temperatures.outdoor = settings.sensors.outdoor.offset + convertTemp(
float value = settings.sensors.outdoor.offset + convertTemp(
CustomOpenTherm::getFloat(response),
settings.opentherm.unitSystem,
settings.system.unitSystem
);
if (settings.opentherm.filterNumValues.enable && fabs(vars.temperatures.outdoor) >= 0.1f) {
vars.temperatures.outdoor += (value - vars.temperatures.outdoor) * settings.opentherm.filterNumValues.factor;
} else {
vars.temperatures.outdoor = value;
}
return true;
}
@@ -802,6 +1018,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::Texhaust)) {
return false;
}
float value = (float) CustomOpenTherm::getInt(response);
@@ -809,12 +1028,19 @@ protected:
return false;
}
vars.temperatures.exhaust = convertTemp(
value = convertTemp(
value,
settings.opentherm.unitSystem,
settings.system.unitSystem
);
if (settings.opentherm.filterNumValues.enable && fabs(vars.temperatures.exhaust) >= 0.1f) {
vars.temperatures.exhaust += (value - vars.temperatures.exhaust) * settings.opentherm.filterNumValues.factor;
} else {
vars.temperatures.exhaust = value;
}
return true;
}
@@ -827,6 +1053,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::Tboiler)) {
return false;
}
float value = CustomOpenTherm::getFloat(response);
@@ -834,12 +1063,19 @@ protected:
return false;
}
vars.temperatures.heating = convertTemp(
value = convertTemp(
value,
settings.opentherm.unitSystem,
settings.system.unitSystem
);
if (settings.opentherm.filterNumValues.enable && fabs(vars.temperatures.heating) >= 0.1f) {
vars.temperatures.heating += (value - vars.temperatures.heating) * settings.opentherm.filterNumValues.factor;
} else {
vars.temperatures.heating = value;
}
return true;
}
@@ -852,14 +1088,25 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::Tret)) {
return false;
}
vars.temperatures.heatingReturn = convertTemp(
float value = convertTemp(
CustomOpenTherm::getFloat(response),
settings.opentherm.unitSystem,
settings.system.unitSystem
);
if (settings.opentherm.filterNumValues.enable && fabs(vars.temperatures.heatingReturn) >= 0.1f) {
vars.temperatures.heatingReturn += (value - vars.temperatures.heatingReturn) * settings.opentherm.filterNumValues.factor;
} else {
vars.temperatures.heatingReturn = value;
}
return true;
}
@@ -873,6 +1120,9 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::Tdhw)) {
return false;
}
float value = CustomOpenTherm::getFloat(response);
@@ -880,12 +1130,19 @@ protected:
return false;
}
vars.temperatures.dhw = convertTemp(
value = convertTemp(
value,
settings.opentherm.unitSystem,
settings.system.unitSystem
);
if (settings.opentherm.filterNumValues.enable && fabs(vars.temperatures.dhw) >= 0.1f) {
vars.temperatures.dhw += (value - vars.temperatures.dhw) * settings.opentherm.filterNumValues.factor;
} else {
vars.temperatures.dhw = value;
}
return true;
}
@@ -898,15 +1155,32 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::DHWFlowRate)) {
return false;
}
float value = CustomOpenTherm::getFloat(response);
if (this->dhwFlowRateMultiplier != 10 && value > convertVolume(16, UnitSystem::METRIC, settings.opentherm.unitSystem)) {
this->dhwFlowRateMultiplier = 10;
if (value < 0) {
return false;
}
// correction
value = value * settings.opentherm.dhwFlowRateFactor;
// no minuscule values
// some boilers send a response of 0.06 when there is no flow
if (value < 0.1f) {
value = 0.0f;
}
// protocol declares a maximum of 16 l/m
//if (value > convertVolume(16.0f, UnitSystem::METRIC, settings.opentherm.unitSystem)) {
// value = 0.0f;
//}
vars.sensors.dhwFlowRate = convertVolume(
value / this->dhwFlowRateMultiplier,
value,
settings.opentherm.unitSystem,
settings.system.unitSystem
);
@@ -923,12 +1197,33 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::ASFflags)) {
return false;
}
vars.sensors.faultCode = response & 0xFF;
return true;
}
bool updateDiagCode() {
unsigned long response = this->instance->sendRequest(CustomOpenTherm::buildRequest(
OpenThermRequestType::READ_DATA,
OpenThermMessageID::OEMDiagnosticCode,
0
));
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::OEMDiagnosticCode)) {
return false;
}
vars.sensors.diagnosticCode = CustomOpenTherm::getUInt(response);
return true;
}
bool updateModulationLevel() {
unsigned long response = this->instance->sendRequest(CustomOpenTherm::buildRequest(
OpenThermRequestType::READ_DATA,
@@ -938,9 +1233,42 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::RelModLevel)) {
return false;
}
vars.sensors.modulation = CustomOpenTherm::getFloat(response);
float value = CustomOpenTherm::getFloat(response);
if (value < 0) {
return false;
}
if (settings.opentherm.filterNumValues.enable && fabs(vars.sensors.modulation) >= 0.1f) {
vars.sensors.modulation += (value - vars.sensors.modulation) * settings.opentherm.filterNumValues.factor;
} else {
vars.sensors.modulation = value;
}
return true;
}
bool updateMinModulationLevel() {
unsigned long response = this->instance->sendRequest(CustomOpenTherm::buildRequest(
OpenThermRequestType::READ_DATA,
OpenThermMessageID::MaxCapacityMinModLevel,
0
));
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::MaxCapacityMinModLevel)) {
return false;
}
vars.parameters.minModulation = response & 0xFF;
vars.parameters.maxPower = (response & 0xFFFF) >> 8;
return true;
}
@@ -954,19 +1282,37 @@ protected:
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::CHPressure)) {
return false;
}
float value = CustomOpenTherm::getFloat(response);
if (this->pressureMultiplier != 10 && value > convertPressure(5, UnitSystem::METRIC, settings.opentherm.unitSystem)) {
this->pressureMultiplier = 10;
if (value < 0) {
return false;
}
vars.sensors.pressure = convertPressure(
value / this->pressureMultiplier,
// correction
value = value * settings.opentherm.pressureFactor;
// protocol declares a maximum of 5 bar
//if (value > convertPressure(5.0f, UnitSystem::METRIC, settings.opentherm.unitSystem)) {
// value = 0.0f;
//}
value = convertPressure(
value,
settings.opentherm.unitSystem,
settings.system.unitSystem
);
if (settings.opentherm.filterNumValues.enable && fabs(vars.sensors.pressure) >= 0.1f) {
vars.sensors.pressure += (value - vars.sensors.pressure) * settings.opentherm.filterNumValues.factor;
} else {
vars.sensors.pressure = value;
}
return true;
}
};

View File

@@ -1,5 +1,5 @@
#define PORTAL_CACHE_TIME "max-age=86400"
#define PORTAL_CACHE settings.system.debug ? nullptr : PORTAL_CACHE_TIME
#define PORTAL_CACHE (settings.system.logLevel >= TinyLogger::Level::TRACE ? nullptr : PORTAL_CACHE_TIME)
#ifdef ARDUINO_ARCH_ESP8266
#include <ESP8266WebServer.h>
#include <Updater.h>
@@ -225,7 +225,7 @@ protected:
this->webServer->send(406);
return;
} else if (plain.length() > 2048) {
} else if (plain.length() > 2536) {
this->webServer->send(413);
return;
}
@@ -413,7 +413,7 @@ protected:
this->webServer->send(406);
return;
} else if (plain.length() > 2048) {
} else if (plain.length() > 2536) {
this->webServer->send(413);
return;
}
@@ -469,7 +469,7 @@ protected:
this->webServer->send(406);
return;
} else if (plain.length() > 1024) {
} else if (plain.length() > 1536) {
this->webServer->send(413);
return;
}
@@ -504,6 +504,9 @@ protected:
bool isConnected = network->isConnected();
JsonDocument doc;
doc["system"]["resetReason"] = getResetReason();
doc["system"]["uptime"] = millis() / 1000ul;
doc["network"]["hostname"] = networkSettings.hostname;
doc["network"]["mac"] = network->getStaMac();
doc["network"]["connected"] = isConnected;
@@ -515,49 +518,124 @@ protected:
doc["network"]["gateway"] = isConnected ? network->getStaGateway().toString() : "";
doc["network"]["dns"] = isConnected ? network->getStaDns().toString() : "";
doc["system"]["buildVersion"] = BUILD_VERSION;
doc["system"]["buildDate"] = __DATE__ " " __TIME__;
doc["system"]["buildEnv"] = BUILD_ENV;
doc["system"]["uptime"] = millis() / 1000ul;
doc["system"]["totalHeap"] = getTotalHeap();
doc["system"]["freeHeap"] = getFreeHeap();
doc["system"]["minFreeHeap"] = getFreeHeap(true);
doc["system"]["maxFreeBlockHeap"] = getMaxFreeBlockHeap();
doc["system"]["minMaxFreeBlockHeap"] = getMaxFreeBlockHeap(true);
doc["system"]["resetReason"] = getResetReason();
doc["build"]["version"] = BUILD_VERSION;
doc["build"]["date"] = __DATE__ " " __TIME__;
doc["build"]["env"] = BUILD_ENV;
doc["heap"]["total"] = getTotalHeap();
doc["heap"]["free"] = getFreeHeap();
doc["heap"]["minFree"] = getFreeHeap(true);
doc["heap"]["maxFreeBlock"] = getMaxFreeBlockHeap();
doc["heap"]["minMaxFreeBlock"] = getMaxFreeBlockHeap(true);
#ifdef ARDUINO_ARCH_ESP8266
doc["system"]["chipModel"] = esp_is_8285() ? "ESP8285" : "ESP8266";
doc["system"]["chipRevision"] = 0;
doc["system"]["chipCores"] = 1;
doc["system"]["cpuFreq"] = ESP.getCpuFreqMHz();
doc["system"]["coreVersion"] = ESP.getCoreVersion();
doc["system"]["flashSize"] = ESP.getFlashChipSize();
doc["system"]["flashRealSize"] = ESP.getFlashChipRealSize();
doc["build"]["core"] = ESP.getCoreVersion();
doc["build"]["sdk"] = ESP.getSdkVersion();
doc["chip"]["model"] = esp_is_8285() ? "ESP8285" : "ESP8266";
doc["chip"]["rev"] = 0;
doc["chip"]["cores"] = 1;
doc["chip"]["freq"] = ESP.getCpuFreqMHz();
doc["flash"]["size"] = ESP.getFlashChipSize();
doc["flash"]["realSize"] = ESP.getFlashChipRealSize();
#elif ARDUINO_ARCH_ESP32
doc["system"]["chipModel"] = ESP.getChipModel();
doc["system"]["chipRevision"] = ESP.getChipRevision();
doc["system"]["chipCores"] = ESP.getChipCores();
doc["system"]["cpuFreq"] = ESP.getCpuFreqMHz();
doc["system"]["coreVersion"] = ESP.getSdkVersion();
doc["system"]["flashSize"] = ESP.getFlashChipSize();
doc["system"]["flashRealSize"] = doc["system"]["flashSize"];
doc["build"]["core"] = ESP.getCoreVersion();
doc["build"]["sdk"] = ESP.getSdkVersion();
doc["chip"]["model"] = ESP.getChipModel();
doc["chip"]["rev"] = ESP.getChipRevision();
doc["chip"]["cores"] = ESP.getChipCores();
doc["chip"]["freq"] = ESP.getCpuFreqMHz();
doc["flash"]["size"] = ESP.getFlashChipSize();
doc["flash"]["realSize"] = doc["flash"]["size"];
#else
doc["system"]["chipModel"] = 0;
doc["system"]["chipRevision"] = 0;
doc["system"]["chipCores"] = 0;
doc["system"]["cpuFreq"] = 0;
doc["system"]["coreVersion"] = 0;
doc["system"]["flashSize"] = 0;
doc["system"]["flashRealSize"] = 0;
doc["build"]["core"] = 0;
doc["build"]["sdk"] = 0;
doc["chip"]["model"] = 0;
doc["chip"]["rev"] = 0;
doc["chip"]["cores"] = 0;
doc["chip"]["freq"] = 0;
doc["flash"]["size"] = 0;
doc["flash"]["realSize"] = 0;
#endif
doc.shrinkToFit();
this->bufferedWebServer->send(200, "application/json", doc);
});
this->webServer->on("/api/debug", HTTP_GET, [this]() {
JsonDocument doc;
doc["build"]["version"] = BUILD_VERSION;
doc["build"]["date"] = __DATE__ " " __TIME__;
doc["build"]["env"] = BUILD_ENV;
doc["heap"]["total"] = getTotalHeap();
doc["heap"]["free"] = getFreeHeap();
doc["heap"]["minFree"] = getFreeHeap(true);
doc["heap"]["maxFreeBlock"] = getMaxFreeBlockHeap();
doc["heap"]["minMaxFreeBlock"] = getMaxFreeBlockHeap(true);
#if defined(ARDUINO_ARCH_ESP32)
auto reason = esp_reset_reason();
if (reason != ESP_RST_UNKNOWN && reason != ESP_RST_POWERON && reason != ESP_RST_SW) {
#elif defined(ARDUINO_ARCH_ESP8266)
auto reason = ESP.getResetInfoPtr()->reason;
if (reason != REASON_DEFAULT_RST && reason != REASON_SOFT_RESTART && reason != REASON_EXT_SYS_RST) {
#else
if (false) {
#endif
doc["crash"]["reason"] = getResetReason();
doc["crash"]["core"] = CrashRecorder::ext.core;
doc["crash"]["heap"] = CrashRecorder::ext.heap;
doc["crash"]["uptime"] = CrashRecorder::ext.uptime;
if (CrashRecorder::backtrace.length > 0 && CrashRecorder::backtrace.length <= CrashRecorder::backtraceMaxLength) {
String backtraceStr;
arr2str(backtraceStr, CrashRecorder::backtrace.data, CrashRecorder::backtrace.length);
doc["crash"]["backtrace"]["data"] = backtraceStr;
doc["crash"]["backtrace"]["continues"] = CrashRecorder::backtrace.continues;
}
if (CrashRecorder::epc.length > 0 && CrashRecorder::epc.length <= CrashRecorder::epcMaxLength) {
String epcStr;
arr2str(epcStr, CrashRecorder::epc.data, CrashRecorder::epc.length);
doc["crash"]["epc"] = epcStr;
}
}
#ifdef ARDUINO_ARCH_ESP8266
doc["build"]["core"] = ESP.getCoreVersion();
doc["build"]["sdk"] = ESP.getSdkVersion();
doc["chip"]["model"] = esp_is_8285() ? "ESP8285" : "ESP8266";
doc["chip"]["rev"] = 0;
doc["chip"]["cores"] = 1;
doc["chip"]["freq"] = ESP.getCpuFreqMHz();
doc["flash"]["size"] = ESP.getFlashChipSize();
doc["flash"]["realSize"] = ESP.getFlashChipRealSize();
#elif ARDUINO_ARCH_ESP32
doc["build"]["core"] = ESP.getCoreVersion();
doc["build"]["sdk"] = ESP.getSdkVersion();
doc["chip"]["model"] = ESP.getChipModel();
doc["chip"]["rev"] = ESP.getChipRevision();
doc["chip"]["cores"] = ESP.getChipCores();
doc["chip"]["freq"] = ESP.getCpuFreqMHz();
doc["flash"]["size"] = ESP.getFlashChipSize();
doc["flash"]["realSize"] = doc["flash"]["size"];
#else
doc["build"]["core"] = 0;
doc["build"]["sdk"] = 0;
doc["chip"]["model"] = 0;
doc["chip"]["rev"] = 0;
doc["chip"]["cores"] = 0;
doc["chip"]["freq"] = 0;
doc["flash"]["size"] = 0;
doc["flash"]["realSize"] = 0;
#endif
doc.shrinkToFit();
this->webServer->sendHeader(F("Content-Disposition"), F("attachment; filename=\"debug.json\""));
this->bufferedWebServer->send(200, "application/json", doc, true);
});
// not found
this->webServer->onNotFound([this]() {
@@ -582,6 +660,10 @@ protected:
void loop() {
// web server
if (!this->stateWebServer() && (network->isApEnabled() || network->isConnected()) && millis() - this->webServerChangeState >= this->changeStateInterval) {
#ifdef ARDUINO_ARCH_ESP32
this->delay(250);
#endif
this->startWebServer();
Log.straceln(FPSTR(L_PORTAL_WEBSERVER), F("Started: AP up or STA connected"));
@@ -687,7 +769,7 @@ protected:
return;
}
this->webServer->handleClient();
//this->webServer->handleClient();
this->webServer->stop();
this->webServerEnabled = false;
this->webServerChangeState = millis();
@@ -712,7 +794,7 @@ protected:
return;
}
this->dnsServer->processNextRequest();
//this->dnsServer->processNextRequest();
this->dnsServer->stop();
this->dnsServerEnabled = false;
this->dnsServerChangeState = millis();

View File

@@ -29,27 +29,33 @@ protected:
#endif
void loop() {
float newTemp = vars.parameters.heatingSetpoint;
if (!settings.pid.enable && fabs(pidRegulator.integral) > 0.01f) {
pidRegulator.integral = 0.0f;
if (vars.states.emergency) {
if (settings.heating.turbo) {
settings.heating.turbo = false;
Log.sinfoln(FPSTR(L_REGULATOR), F("Turbo mode auto disabled"));
}
newTemp = this->getEmergencyModeTemp();
} else {
if (settings.heating.turbo && (fabs(settings.heating.target - vars.temperatures.indoor) < 1 || !settings.heating.enable || (settings.equitherm.enable && settings.pid.enable))) {
settings.heating.turbo = false;
Log.sinfoln(FPSTR(L_REGULATOR), F("Turbo mode auto disabled"));
}
newTemp = this->getNormalModeTemp();
Log.sinfoln(FPSTR(L_REGULATOR_PID), F("Integral sum has been reset"));
}
if (settings.heating.turbo) {
if (!settings.heating.enable || vars.states.emergency || !vars.sensors.indoor.connected) {
settings.heating.turbo = false;
} else if (!settings.pid.enable && !settings.equitherm.enable) {
settings.heating.turbo = false;
} else if (fabs(settings.heating.target - vars.temperatures.indoor) <= 1.0f) {
settings.heating.turbo = false;
}
if (!settings.heating.turbo) {
Log.sinfoln(FPSTR(L_REGULATOR), F("Turbo mode auto disabled"));
}
}
float newTemp = vars.states.emergency
? settings.emergency.target
: this->getNormalModeTemp();
// Limits
newTemp = constrain(
newTemp,
@@ -57,58 +63,12 @@ protected:
!settings.opentherm.nativeHeatingControl ? settings.heating.maxTemp : THERMOSTAT_INDOOR_MAX_TEMP
);
if (fabs(vars.parameters.heatingSetpoint - newTemp) > 0.4999f) {
if (fabs(vars.parameters.heatingSetpoint - newTemp) > 0.09f) {
vars.parameters.heatingSetpoint = newTemp;
}
}
float getEmergencyModeTemp() {
float newTemp = 0;
// if use equitherm
if (settings.emergency.useEquitherm) {
float etResult = getEquithermTemp(settings.heating.minTemp, settings.heating.maxTemp);
if (fabs(prevEtResult - etResult) > 0.4999f) {
prevEtResult = etResult;
newTemp += etResult;
Log.sinfoln(FPSTR(L_REGULATOR_EQUITHERM), F("New emergency result: %.2f"), etResult);
} else {
newTemp += prevEtResult;
}
} else if(settings.emergency.usePid) {
if (vars.parameters.heatingEnabled) {
float pidResult = getPidTemp(
settings.heating.minTemp,
settings.heating.maxTemp
);
if (fabs(prevPidResult - pidResult) > 0.4999f) {
prevPidResult = pidResult;
newTemp += pidResult;
Log.sinfoln(FPSTR(L_REGULATOR_PID), F("New emergency result: %.2f"), pidResult);
} else {
newTemp += prevPidResult;
}
} else if (!vars.parameters.heatingEnabled && prevPidResult != 0) {
newTemp += prevPidResult;
}
} else {
// default temp, manual mode
newTemp = settings.emergency.target;
}
return newTemp;
}
float getNormalModeTemp() {
float newTemp = 0;
@@ -116,17 +76,49 @@ protected:
prevHeatingTarget = settings.heating.target;
Log.sinfoln(FPSTR(L_REGULATOR), F("New target: %.2f"), settings.heating.target);
if (/*settings.equitherm.enable && */settings.pid.enable) {
pidRegulator.integral = 0;
/*if (settings.pid.enable) {
pidRegulator.integral = 0.0f;
Log.sinfoln(FPSTR(L_REGULATOR_PID), F("Integral sum has been reset"));
}
}*/
}
// if use equitherm
if (settings.equitherm.enable) {
float etResult = getEquithermTemp(settings.heating.minTemp, settings.heating.maxTemp);
unsigned short minTemp = settings.heating.minTemp;
unsigned short maxTemp = settings.heating.maxTemp;
float targetTemp = settings.heating.target;
float indoorTemp = vars.temperatures.indoor;
float outdoorTemp = vars.temperatures.outdoor;
if (fabs(prevEtResult - etResult) > 0.4999f) {
if (settings.system.unitSystem == UnitSystem::IMPERIAL) {
minTemp = f2c(minTemp);
maxTemp = f2c(maxTemp);
targetTemp = f2c(targetTemp);
indoorTemp = f2c(indoorTemp);
outdoorTemp = f2c(outdoorTemp);
}
if (!vars.sensors.indoor.connected || settings.pid.enable) {
etRegulator.Kt = 0.0f;
etRegulator.indoorTemp = 0.0f;
} else {
etRegulator.Kt = settings.heating.turbo ? 0.0f : settings.equitherm.t_factor;
etRegulator.indoorTemp = indoorTemp;
}
etRegulator.setLimits(minTemp, maxTemp);
etRegulator.Kn = settings.equitherm.n_factor;
etRegulator.Kk = settings.equitherm.k_factor;
etRegulator.targetTemp = targetTemp;
etRegulator.outdoorTemp = outdoorTemp;
float etResult = etRegulator.getResult();
if (settings.system.unitSystem == UnitSystem::IMPERIAL) {
etResult = c2f(etResult);
}
if (fabs(prevEtResult - etResult) > 0.09f) {
prevEtResult = etResult;
newTemp += etResult;
@@ -139,13 +131,26 @@ protected:
// if use pid
if (settings.pid.enable) {
if (vars.parameters.heatingEnabled) {
float pidResult = getPidTemp(
settings.equitherm.enable ? (settings.pid.maxTemp * -1) : settings.pid.minTemp,
settings.pid.maxTemp
);
//if (vars.parameters.heatingEnabled) {
if (settings.heating.enable && vars.sensors.indoor.connected) {
pidRegulator.Kp = settings.heating.turbo ? 0.0f : settings.pid.p_factor;
pidRegulator.Kd = settings.pid.d_factor;
if (fabs(prevPidResult - pidResult) > 0.4999f) {
pidRegulator.setLimits(settings.pid.minTemp, settings.pid.maxTemp);
pidRegulator.setDt(settings.pid.dt * 1000u);
pidRegulator.input = vars.temperatures.indoor;
pidRegulator.setpoint = settings.heating.target;
if (fabs(pidRegulator.Ki - settings.pid.i_factor) >= 0.0001f) {
pidRegulator.Ki = settings.pid.i_factor;
pidRegulator.integral = 0.0f;
pidRegulator.getResultNow();
Log.sinfoln(FPSTR(L_REGULATOR_PID), F("Integral sum has been reset"));
}
float pidResult = pidRegulator.getResultTimer();
if (fabs(prevPidResult - pidResult) > 0.09f) {
prevPidResult = pidResult;
newTemp += pidResult;
@@ -155,13 +160,19 @@ protected:
} else {
newTemp += prevPidResult;
}
} else {
newTemp += prevPidResult;
}
}
} else if (fabs(pidRegulator.integral) > 0.0001f) {
pidRegulator.integral = 0;
Log.sinfoln(FPSTR(L_REGULATOR_PID), F("Integral sum has been reset"));
// Turbo mode
if (settings.heating.turbo && (settings.equitherm.enable || settings.pid.enable)) {
newTemp += constrain(
settings.heating.target - vars.temperatures.indoor,
-3.0f,
3.0f
) * settings.heating.turboFactor;
}
// default temp, manual mode
@@ -171,96 +182,4 @@ protected:
return newTemp;
}
/**
* @brief Get the Equitherm Temp
* Calculations in degrees C, conversion occurs when using F
*
* @param minTemp
* @param maxTemp
* @return float
*/
float getEquithermTemp(int minTemp, int maxTemp) {
float targetTemp = vars.states.emergency ? settings.emergency.target : settings.heating.target;
float indoorTemp = vars.temperatures.indoor;
float outdoorTemp = vars.temperatures.outdoor;
if (settings.system.unitSystem == UnitSystem::IMPERIAL) {
minTemp = f2c(minTemp);
maxTemp = f2c(maxTemp);
targetTemp = f2c(targetTemp);
indoorTemp = f2c(indoorTemp);
outdoorTemp = f2c(outdoorTemp);
}
if (vars.states.emergency) {
if (settings.sensors.indoor.type == SensorType::MANUAL) {
etRegulator.Kt = 0;
etRegulator.indoorTemp = 0;
} else if ((settings.sensors.indoor.type == SensorType::DS18B20 || settings.sensors.indoor.type == SensorType::BLUETOOTH) && !vars.sensors.indoor.connected) {
etRegulator.Kt = 0;
etRegulator.indoorTemp = 0;
} else {
etRegulator.Kt = settings.equitherm.t_factor;
etRegulator.indoorTemp = indoorTemp;
}
etRegulator.outdoorTemp = outdoorTemp;
} else if (settings.pid.enable) {
etRegulator.Kt = 0;
etRegulator.indoorTemp = round(indoorTemp);
etRegulator.outdoorTemp = round(outdoorTemp);
} else {
if (settings.heating.turbo) {
etRegulator.Kt = 10;
} else {
etRegulator.Kt = settings.equitherm.t_factor;
}
etRegulator.indoorTemp = indoorTemp;
etRegulator.outdoorTemp = outdoorTemp;
}
etRegulator.setLimits(minTemp, maxTemp);
etRegulator.Kn = settings.equitherm.n_factor;
etRegulator.Kk = settings.equitherm.k_factor;
etRegulator.targetTemp = targetTemp;
float result = etRegulator.getResult();
if (settings.system.unitSystem == UnitSystem::IMPERIAL) {
result = c2f(result);
}
return result;
}
float getPidTemp(int minTemp, int maxTemp) {
if (fabs(pidRegulator.Kp - settings.pid.p_factor) >= 0.0001f) {
pidRegulator.Kp = settings.pid.p_factor;
pidRegulator.integral = 0;
Log.sinfoln(FPSTR(L_REGULATOR_PID), F("Integral sum has been reset"));
}
if (fabs(pidRegulator.Ki - settings.pid.i_factor) >= 0.0001f) {
pidRegulator.Ki = settings.pid.i_factor;
pidRegulator.integral = 0;
Log.sinfoln(FPSTR(L_REGULATOR_PID), F("Integral sum has been reset"));
}
if (fabs(pidRegulator.Kd - settings.pid.d_factor) >= 0.0001f) {
pidRegulator.Kd = settings.pid.d_factor;
pidRegulator.integral = 0;
Log.sinfoln(FPSTR(L_REGULATOR_PID), F("Integral sum has been reset"));
}
pidRegulator.setLimits(minTemp, maxTemp);
pidRegulator.setDt(settings.pid.dt * 1000u);
pidRegulator.input = vars.temperatures.indoor;
pidRegulator.setpoint = settings.heating.target;
return pidRegulator.getResultTimer();
}
};

View File

@@ -186,24 +186,25 @@ protected:
}
if (!pClient->connect(address)) {
Log.swarningln(FPSTR(L_SENSORS_BLE), "Device %s: failed connecting", address.toString().c_str());
Log.swarningln(FPSTR(L_SENSORS_BLE), F("Device %s: failed connecting"), address.toString().c_str());
NimBLEDevice::deleteClient(pClient);
return false;
}
Log.sinfoln(FPSTR(L_SENSORS_BLE), "Device %s: connected", address.toString().c_str());
Log.sinfoln(FPSTR(L_SENSORS_BLE), F("Device %s: connected"), address.toString().c_str());
NimBLERemoteService* pService = nullptr;
NimBLERemoteCharacteristic* pChar = nullptr;
// ENV Service (0x181A)
pService = pClient->getService(NimBLEUUID((uint16_t) 0x181AU));
NimBLEUUID serviceUuid((uint16_t) 0x181AU);
pService = pClient->getService(serviceUuid);
if (!pService) {
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Device %s: failed to find env service (%s)"),
address.toString().c_str(),
pService->getUUID().toString().c_str()
serviceUuid.toString().c_str()
);
} else {
@@ -211,25 +212,38 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: found env service (%s)"),
address.toString().c_str(),
pService->getUUID().toString().c_str()
serviceUuid.toString().c_str()
);
// 0x2A6E - Notify temperature x0.01C (pvvx)
bool tempNotifyCreated = false;
if (!tempNotifyCreated) {
pChar = pService->getCharacteristic(NimBLEUUID((uint16_t) 0x2A6E));
NimBLEUUID charUuid((uint16_t) 0x2A6E);
pChar = pService->getCharacteristic(charUuid);
if (pChar && pChar->canNotify()) {
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Device %s: found temperature char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
tempNotifyCreated = pChar->subscribe(true, [pTemperature](NimBLERemoteCharacteristic* pChar, uint8_t* pData, size_t length, bool isNotify) {
NimBLEClient* pClient = pChar->getRemoteService()->getClient();
if (pChar == nullptr) {
return;
}
NimBLERemoteService* pService = pChar->getRemoteService();
if (pService == nullptr) {
return;
}
NimBLEClient* pClient = pService->getClient();
if (pClient == nullptr) {
return;
}
if (length != 2) {
Log.swarningln(
@@ -264,7 +278,7 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: subscribed to temperature char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
} else {
@@ -272,7 +286,7 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: failed to subscribe to temperature char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
}
}
@@ -281,18 +295,31 @@ protected:
// 0x2A1F - Notify temperature x0.1C (atc1441/pvvx)
if (!tempNotifyCreated) {
pChar = pService->getCharacteristic(NimBLEUUID((uint16_t) 0x2A1F));
NimBLEUUID charUuid((uint16_t) 0x2A1F);
pChar = pService->getCharacteristic(charUuid);
if (pChar && pChar->canNotify()) {
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Device %s: found temperature char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
tempNotifyCreated = pChar->subscribe(true, [pTemperature](NimBLERemoteCharacteristic* pChar, uint8_t* pData, size_t length, bool isNotify) {
NimBLEClient* pClient = pChar->getRemoteService()->getClient();
if (pChar == nullptr) {
return;
}
NimBLERemoteService* pService = pChar->getRemoteService();
if (pService == nullptr) {
return;
}
NimBLEClient* pClient = pService->getClient();
if (pClient == nullptr) {
return;
}
if (length != 2) {
Log.swarningln(
@@ -327,7 +354,7 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: subscribed to temperature char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
} else {
@@ -335,7 +362,7 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: failed to subscribe to temperature char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
}
}
@@ -357,18 +384,31 @@ protected:
if (pHumidity != nullptr) {
bool humidityNotifyCreated = false;
if (!humidityNotifyCreated) {
pChar = pService->getCharacteristic(NimBLEUUID((uint16_t) 0x2A6F));
NimBLEUUID charUuid((uint16_t) 0x2A6F);
pChar = pService->getCharacteristic(charUuid);
if (pChar && pChar->canNotify()) {
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Device %s: found humidity char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
humidityNotifyCreated = pChar->subscribe(true, [pHumidity](NimBLERemoteCharacteristic* pChar, uint8_t* pData, size_t length, bool isNotify) {
NimBLEClient* pClient = pChar->getRemoteService()->getClient();
if (pChar == nullptr) {
return;
}
NimBLERemoteService* pService = pChar->getRemoteService();
if (pService == nullptr) {
return;
}
NimBLEClient* pClient = pService->getClient();
if (pClient == nullptr) {
return;
}
if (length != 2) {
Log.swarningln(
@@ -403,7 +443,7 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: subscribed to humidity char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
} else {
@@ -411,7 +451,7 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: failed to subscribe to humidity char (%s) in env service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
}
}
@@ -430,13 +470,14 @@ protected:
// Battery Service (0x180F)
if (pBattery != nullptr) {
pService = pClient->getService(NimBLEUUID((uint16_t) 0x180F));
NimBLEUUID serviceUuid((uint16_t) 0x180F);
pService = pClient->getService(serviceUuid);
if (!pService) {
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Device %s: failed to find battery service (%s)"),
address.toString().c_str(),
pService->getUUID().toString().c_str()
serviceUuid.toString().c_str()
);
} else {
@@ -444,24 +485,37 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: found battery service (%s)"),
address.toString().c_str(),
pService->getUUID().toString().c_str()
serviceUuid.toString().c_str()
);
// 0x2A19 - Notify the battery charge level 0..99% (pvvx)
bool batteryNotifyCreated = false;
if (!batteryNotifyCreated) {
pChar = pService->getCharacteristic(NimBLEUUID((uint16_t) 0x2A19));
NimBLEUUID charUuid((uint16_t) 0x2A19);
pChar = pService->getCharacteristic(charUuid);
if (pChar && pChar->canNotify()) {
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Device %s: found battery char (%s) in battery service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
batteryNotifyCreated = pChar->subscribe(true, [pBattery](NimBLERemoteCharacteristic* pChar, uint8_t* pData, size_t length, bool isNotify) {
NimBLEClient* pClient = pChar->getRemoteService()->getClient();
if (pChar == nullptr) {
return;
}
NimBLERemoteService* pService = pChar->getRemoteService();
if (pService == nullptr) {
return;
}
NimBLEClient* pClient = pService->getClient();
if (pClient == nullptr) {
return;
}
if (length != 1) {
Log.swarningln(
@@ -496,7 +550,7 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: subscribed to battery char (%s) in battery service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
} else {
@@ -504,7 +558,7 @@ protected:
FPSTR(L_SENSORS_BLE),
F("Device %s: failed to subscribe to battery char (%s) in battery service"),
address.toString().c_str(),
pChar->getUUID().toString().c_str()
charUuid.toString().c_str()
);
}
}

View File

@@ -24,16 +24,16 @@ struct NetworkSettings {
struct Settings {
struct {
bool debug = DEBUG_BY_DEFAULT;
uint8_t logLevel = DEFAULT_LOG_LEVEL;
struct {
bool enable = USE_SERIAL;
unsigned int baudrate = 115200;
bool enable = DEFAULT_SERIAL_ENABLE;
unsigned int baudrate = DEFAULT_SERIAL_BAUD;
} serial;
struct {
bool enable = USE_TELNET;
unsigned short port = 23;
bool enable = DEFAULT_TELNET_ENABLE;
unsigned short port = DEFAULT_TELNET_PORT;
} telnet;
UnitSystem unitSystem = UnitSystem::METRIC;
@@ -51,9 +51,12 @@ struct Settings {
byte inGpio = DEFAULT_OT_IN_GPIO;
byte outGpio = DEFAULT_OT_OUT_GPIO;
byte rxLedGpio = DEFAULT_OT_RX_LED_GPIO;
byte faultStateGpio = DEFAULT_OT_FAULT_STATE_GPIO;
byte invertFaultState = false;
unsigned int memberIdCode = 0;
uint8_t maxModulation = 100;
float pressureFactor = 1.0f;
float dhwFlowRateFactor = 1.0f;
float minPower = 0.0f;
float maxPower = 0.0f;
bool dhwPresent = true;
bool summerWinterMode = false;
bool heatingCh2Enabled = true;
@@ -63,6 +66,12 @@ struct Settings {
bool modulationSyncWithHeating = false;
bool getMinMaxTemp = true;
bool nativeHeatingControl = false;
bool immergasFix = false;
struct {
bool enable = false;
float factor = 0.1f;
} filterNumValues;
} opentherm;
struct {
@@ -77,15 +86,8 @@ struct Settings {
} mqtt;
struct {
bool enable = false;
float target = DEFAULT_HEATING_TARGET_TEMP;
unsigned short tresholdTime = 120;
bool useEquitherm = false;
bool usePid = false;
bool onNetworkFault = true;
bool onMqttFault = true;
bool onIndoorSensorDisconnect = false;
bool onOutdoorSensorDisconnect = false;
} emergency;
struct {
@@ -93,9 +95,9 @@ struct Settings {
bool turbo = false;
float target = DEFAULT_HEATING_TARGET_TEMP;
float hysteresis = 0.5f;
float turboFactor = 7.5f;
byte minTemp = DEFAULT_HEATING_MIN_TEMP;
byte maxTemp = DEFAULT_HEATING_MAX_TEMP;
byte maxModulation = 100;
} heating;
struct {
@@ -107,12 +109,12 @@ struct Settings {
struct {
bool enable = false;
float p_factor = 2;
float p_factor = 2.0f;
float i_factor = 0.0055f;
float d_factor = 0;
float d_factor = 0.0f;
unsigned short dt = 180;
byte minTemp = 0;
byte maxTemp = DEFAULT_HEATING_MAX_TEMP;
short minTemp = 0;
short maxTemp = DEFAULT_HEATING_MAX_TEMP;
} pid;
struct {
@@ -124,7 +126,7 @@ struct Settings {
struct {
struct {
SensorType type = SensorType::BOILER;
SensorType type = SensorType::BOILER_OUTDOOR;
byte gpio = DEFAULT_SENSOR_OUTDOOR_GPIO;
uint8_t bleAddress[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
float offset = 0.0f;
@@ -146,6 +148,25 @@ struct Settings {
unsigned short antiStuckTime = 300;
} externalPump;
struct {
struct {
bool enable = false;
byte gpio = GPIO_IS_NOT_CONFIGURED;
byte invertState = false;
unsigned short thresholdTime = 60;
} input;
struct {
bool enable = false;
byte gpio = GPIO_IS_NOT_CONFIGURED;
byte invertState = false;
unsigned short thresholdTime = 60;
bool onFault = true;
bool onLossConnection = true;
bool onEnabledHeating = false;
} output;
} cascadeControl;
char validationValue[8] = SETTINGS_VALID_VALUE;
} settings;
@@ -166,7 +187,9 @@ struct Variables {
float modulation = 0.0f;
float pressure = 0.0f;
float dhwFlowRate = 0.0f;
float power = 0.0f;
byte faultCode = 0;
unsigned short diagnosticCode = 0;
int8_t rssi = 0;
struct {
@@ -193,6 +216,11 @@ struct Variables {
float exhaust = 0.0f;
} temperatures;
struct {
bool input = false;
bool output = false;
} cascadeControl;
struct {
bool heatingEnabled = false;
byte heatingMinTemp = DEFAULT_HEATING_MIN_TEMP;
@@ -201,7 +229,9 @@ struct Variables {
unsigned long extPumpLastEnableTime = 0;
byte dhwMinTemp = DEFAULT_DHW_MIN_TEMP;
byte dhwMaxTemp = DEFAULT_DHW_MAX_TEMP;
byte minModulation = 0;
byte maxModulation = 0;
uint8_t maxPower = 0;
uint8_t slaveMemberId = 0;
uint8_t slaveFlags = 0;
uint8_t slaveType = 0;

View File

@@ -30,12 +30,20 @@
#define BUILD_ENV "undefined"
#endif
#ifndef USE_SERIAL
#define USE_SERIAL true
#ifndef DEFAULT_SERIAL_ENABLE
#define DEFAULT_SERIAL_ENABLE true
#endif
#ifndef USE_TELNET
#define USE_TELNET true
#ifndef DEFAULT_SERIAL_BAUD
#define DEFAULT_SERIAL_BAUD 115200
#endif
#ifndef DEFAULT_TELNET_ENABLE
#define DEFAULT_TELNET_ENABLE true
#endif
#ifndef DEFAULT_TELNET_PORT
#define DEFAULT_TELNET_PORT 23
#endif
#ifndef USE_BLE
@@ -62,8 +70,8 @@
#define DEFAULT_STA_PASSWORD ""
#endif
#ifndef DEBUG_BY_DEFAULT
#define DEBUG_BY_DEFAULT false
#ifndef DEFAULT_LOG_LEVEL
#define DEFAULT_LOG_LEVEL TinyLogger::Level::VERBOSE
#endif
#ifndef DEFAULT_STATUS_LED_GPIO
@@ -139,10 +147,11 @@
#define GPIO_IS_VALID(gpioNum) (gpioNum != GPIO_IS_NOT_CONFIGURED && GPIO_IS_VALID_GPIO(gpioNum))
enum class SensorType : byte {
BOILER,
MANUAL,
DS18B20,
BLUETOOTH
BOILER_OUTDOOR = 0,
BOILER_RETURN = 4,
MANUAL = 1,
DS18B20 = 2,
BLUETOOTH = 3
};
enum class UnitSystem : byte {

View File

@@ -1,6 +1,7 @@
#include <Arduino.h>
#include "defines.h"
#include "strings.h"
#include "CrashRecorder.h"
#include <ArduinoJson.h>
#include <FileData.h>
#include <LittleFS.h>
@@ -45,6 +46,7 @@ MainTask* tMain;
void setup() {
CrashRecorder::init();
LittleFS.begin();
Log.setLevel(TinyLogger::Level::VERBOSE);
@@ -129,7 +131,9 @@ void setup() {
Log.addStream(telnetStream);
}
Log.setLevel(settings.system.debug ? TinyLogger::Level::VERBOSE : TinyLogger::Level::INFO);
if (settings.system.logLevel >= TinyLogger::Level::SILENT && settings.system.logLevel <= TinyLogger::Level::VERBOSE) {
Log.setLevel(static_cast<TinyLogger::Level>(settings.system.logLevel));
}
// network
network = (new NetworkMgr)

View File

@@ -4,6 +4,9 @@
#endif
const char L_SETTINGS[] PROGMEM = "SETTINGS";
const char L_SETTINGS_OT[] PROGMEM = "SETTINGS.OT";
const char L_SETTINGS_DHW[] PROGMEM = "SETTINGS.DHW";
const char L_SETTINGS_HEATING[] PROGMEM = "SETTINGS.HEATING";
const char L_NETWORK[] PROGMEM = "NETWORK";
const char L_NETWORK_SETTINGS[] PROGMEM = "NETWORK.SETTINGS";
const char L_PORTAL_WEBSERVER[] PROGMEM = "PORTAL.WEBSERVER";
@@ -21,4 +24,6 @@ const char L_SENSORS_INDOOR[] PROGMEM = "SENSORS.INDOOR";
const char L_SENSORS_BLE[] PROGMEM = "SENSORS.BLE";
const char L_REGULATOR[] PROGMEM = "REGULATOR";
const char L_REGULATOR_PID[] PROGMEM = "REGULATOR.PID";
const char L_REGULATOR_EQUITHERM[] PROGMEM = "REGULATOR.EQUITHERM";
const char L_REGULATOR_EQUITHERM[] PROGMEM = "REGULATOR.EQUITHERM";
const char L_CASCADE_INPUT[] PROGMEM = "CASCADE.INPUT";
const char L_CASCADE_OUTPUT[] PROGMEM = "CASCADE.OUTPUT";

View File

@@ -188,6 +188,22 @@ String getResetReason() {
return value;
}
template <class T>
void arr2str(String &str, T arr[], size_t length) {
char buffer[12];
for (size_t i = 0; i < length; i++) {
auto addr = arr[i];
if (!addr) {
continue;
}
sprintf(buffer, "0x%08X ", addr);
str.concat(buffer);
}
str.trim();
}
void networkSettingsToJson(const NetworkSettings& src, JsonVariant dst) {
dst["hostname"] = src.hostname;
@@ -326,7 +342,7 @@ bool jsonToNetworkSettings(const JsonVariantConst src, NetworkSettings& dst) {
void settingsToJson(const Settings& src, JsonVariant dst, bool safe = false) {
if (!safe) {
dst["system"]["debug"] = src.system.debug;
dst["system"]["logLevel"] = static_cast<uint8_t>(src.system.logLevel);
dst["system"]["serial"]["enable"] = src.system.serial.enable;
dst["system"]["serial"]["baudrate"] = src.system.serial.baudrate;
dst["system"]["telnet"]["enable"] = src.system.telnet.enable;
@@ -342,9 +358,12 @@ void settingsToJson(const Settings& src, JsonVariant dst, bool safe = false) {
dst["opentherm"]["inGpio"] = src.opentherm.inGpio;
dst["opentherm"]["outGpio"] = src.opentherm.outGpio;
dst["opentherm"]["rxLedGpio"] = src.opentherm.rxLedGpio;
dst["opentherm"]["faultStateGpio"] = src.opentherm.faultStateGpio;
dst["opentherm"]["invertFaultState"] = src.opentherm.invertFaultState;
dst["opentherm"]["memberIdCode"] = src.opentherm.memberIdCode;
dst["opentherm"]["maxModulation"] = src.opentherm.maxModulation;
dst["opentherm"]["pressureFactor"] = roundd(src.opentherm.pressureFactor, 2);
dst["opentherm"]["dhwFlowRateFactor"] = roundd(src.opentherm.dhwFlowRateFactor, 2);
dst["opentherm"]["minPower"] = roundd(src.opentherm.minPower, 2);
dst["opentherm"]["maxPower"] = roundd(src.opentherm.maxPower, 2);
dst["opentherm"]["dhwPresent"] = src.opentherm.dhwPresent;
dst["opentherm"]["summerWinterMode"] = src.opentherm.summerWinterMode;
dst["opentherm"]["heatingCh2Enabled"] = src.opentherm.heatingCh2Enabled;
@@ -354,6 +373,9 @@ void settingsToJson(const Settings& src, JsonVariant dst, bool safe = false) {
dst["opentherm"]["modulationSyncWithHeating"] = src.opentherm.modulationSyncWithHeating;
dst["opentherm"]["getMinMaxTemp"] = src.opentherm.getMinMaxTemp;
dst["opentherm"]["nativeHeatingControl"] = src.opentherm.nativeHeatingControl;
dst["opentherm"]["immergasFix"] = src.opentherm.immergasFix;
dst["opentherm"]["filterNumValues"]["enable"] = src.opentherm.filterNumValues.enable;
dst["opentherm"]["filterNumValues"]["factor"] = roundd(src.opentherm.filterNumValues.factor, 2);
dst["mqtt"]["enable"] = src.mqtt.enable;
dst["mqtt"]["server"] = src.mqtt.server;
@@ -364,30 +386,28 @@ void settingsToJson(const Settings& src, JsonVariant dst, bool safe = false) {
dst["mqtt"]["interval"] = src.mqtt.interval;
dst["mqtt"]["homeAssistantDiscovery"] = src.mqtt.homeAssistantDiscovery;
dst["emergency"]["enable"] = src.emergency.enable;
dst["emergency"]["target"] = roundd(src.emergency.target, 2);
dst["emergency"]["tresholdTime"] = src.emergency.tresholdTime;
dst["emergency"]["useEquitherm"] = src.emergency.useEquitherm;
dst["emergency"]["usePid"] = src.emergency.usePid;
dst["emergency"]["onNetworkFault"] = src.emergency.onNetworkFault;
dst["emergency"]["onMqttFault"] = src.emergency.onMqttFault;
dst["emergency"]["onIndoorSensorDisconnect"] = src.emergency.onIndoorSensorDisconnect;
dst["emergency"]["onOutdoorSensorDisconnect"] = src.emergency.onOutdoorSensorDisconnect;
}
dst["heating"]["enable"] = src.heating.enable;
dst["heating"]["turbo"] = src.heating.turbo;
dst["heating"]["target"] = roundd(src.heating.target, 2);
dst["heating"]["hysteresis"] = roundd(src.heating.hysteresis, 2);
dst["heating"]["turboFactor"] = roundd(src.heating.turboFactor, 2);
dst["heating"]["minTemp"] = src.heating.minTemp;
dst["heating"]["maxTemp"] = src.heating.maxTemp;
dst["heating"]["maxModulation"] = src.heating.maxModulation;
dst["dhw"]["enable"] = src.dhw.enable;
dst["dhw"]["target"] = roundd(src.dhw.target, 1);
dst["dhw"]["minTemp"] = src.dhw.minTemp;
dst["dhw"]["maxTemp"] = src.dhw.maxTemp;
dst["equitherm"]["enable"] = src.equitherm.enable;
dst["equitherm"]["n_factor"] = roundd(src.equitherm.n_factor, 3);
dst["equitherm"]["k_factor"] = roundd(src.equitherm.k_factor, 3);
dst["equitherm"]["t_factor"] = roundd(src.equitherm.t_factor, 3);
dst["pid"]["enable"] = src.pid.enable;
dst["pid"]["p_factor"] = roundd(src.pid.p_factor, 3);
dst["pid"]["i_factor"] = roundd(src.pid.i_factor, 4);
@@ -396,11 +416,6 @@ void settingsToJson(const Settings& src, JsonVariant dst, bool safe = false) {
dst["pid"]["minTemp"] = src.pid.minTemp;
dst["pid"]["maxTemp"] = src.pid.maxTemp;
dst["equitherm"]["enable"] = src.equitherm.enable;
dst["equitherm"]["n_factor"] = roundd(src.equitherm.n_factor, 3);
dst["equitherm"]["k_factor"] = roundd(src.equitherm.k_factor, 3);
dst["equitherm"]["t_factor"] = roundd(src.equitherm.t_factor, 3);
dst["sensors"]["outdoor"]["type"] = static_cast<byte>(src.sensors.outdoor.type);
dst["sensors"]["outdoor"]["gpio"] = src.sensors.outdoor.gpio;
@@ -440,6 +455,19 @@ void settingsToJson(const Settings& src, JsonVariant dst, bool safe = false) {
dst["externalPump"]["postCirculationTime"] = roundd(src.externalPump.postCirculationTime / 60, 0);
dst["externalPump"]["antiStuckInterval"] = roundd(src.externalPump.antiStuckInterval / 86400, 0);
dst["externalPump"]["antiStuckTime"] = roundd(src.externalPump.antiStuckTime / 60, 0);
dst["cascadeControl"]["input"]["enable"] = src.cascadeControl.input.enable;
dst["cascadeControl"]["input"]["gpio"] = src.cascadeControl.input.gpio;
dst["cascadeControl"]["input"]["invertState"] = src.cascadeControl.input.invertState;
dst["cascadeControl"]["input"]["thresholdTime"] = src.cascadeControl.input.thresholdTime;
dst["cascadeControl"]["output"]["enable"] = src.cascadeControl.output.enable;
dst["cascadeControl"]["output"]["gpio"] = src.cascadeControl.output.gpio;
dst["cascadeControl"]["output"]["invertState"] = src.cascadeControl.output.invertState;
dst["cascadeControl"]["output"]["thresholdTime"] = src.cascadeControl.output.thresholdTime;
dst["cascadeControl"]["output"]["onFault"] = src.cascadeControl.output.onFault;
dst["cascadeControl"]["output"]["onLossConnection"] = src.cascadeControl.output.onLossConnection;
dst["cascadeControl"]["output"]["onEnabledHeating"] = src.cascadeControl.output.onEnabledHeating;
}
}
@@ -452,11 +480,11 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!safe) {
// system
if (src["system"]["debug"].is<bool>()) {
bool value = src["system"]["debug"].as<bool>();
if (!src["system"]["logLevel"].isNull()) {
uint8_t value = src["system"]["logLevel"].as<uint8_t>();
if (value != dst.system.debug) {
dst.system.debug = value;
if (value != dst.system.logLevel && value >= TinyLogger::Level::SILENT && value <= TinyLogger::Level::VERBOSE) {
dst.system.logLevel = value;
changed = true;
}
}
@@ -658,32 +686,6 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
}
}
if (!src["opentherm"]["faultStateGpio"].isNull()) {
if (src["opentherm"]["faultStateGpio"].is<JsonString>() && src["opentherm"]["faultStateGpio"].as<JsonString>().size() == 0) {
if (dst.opentherm.faultStateGpio != GPIO_IS_NOT_CONFIGURED) {
dst.opentherm.faultStateGpio = GPIO_IS_NOT_CONFIGURED;
changed = true;
}
} else {
unsigned char value = src["opentherm"]["faultStateGpio"].as<unsigned char>();
if (GPIO_IS_VALID(value) && value != dst.opentherm.faultStateGpio) {
dst.opentherm.faultStateGpio = value;
changed = true;
}
}
}
if (src["opentherm"]["invertFaultState"].is<bool>()) {
bool value = src["opentherm"]["invertFaultState"].as<bool>();
if (value != dst.opentherm.invertFaultState) {
dst.opentherm.invertFaultState = value;
changed = true;
}
}
if (!src["opentherm"]["memberIdCode"].isNull()) {
unsigned int value = src["opentherm"]["memberIdCode"].as<unsigned int>();
@@ -693,6 +695,69 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
}
}
if (!src["opentherm"]["maxModulation"].isNull()) {
unsigned char value = src["opentherm"]["maxModulation"].as<unsigned char>();
if (value > 0 && value <= 100 && value != dst.opentherm.maxModulation) {
dst.opentherm.maxModulation = value;
changed = true;
}
}
if (!src["opentherm"]["pressureFactor"].isNull()) {
float value = src["opentherm"]["pressureFactor"].as<float>();
if (value > 0 && value <= 100 && fabs(value - dst.opentherm.pressureFactor) > 0.0001f) {
dst.opentherm.pressureFactor = roundd(value, 2);
changed = true;
}
}
if (!src["opentherm"]["dhwFlowRateFactor"].isNull()) {
float value = src["opentherm"]["dhwFlowRateFactor"].as<float>();
if (value > 0 && value <= 100 && fabs(value - dst.opentherm.dhwFlowRateFactor) > 0.0001f) {
dst.opentherm.dhwFlowRateFactor = roundd(value, 2);
changed = true;
}
}
if (!src["opentherm"]["minPower"].isNull()) {
float value = src["opentherm"]["minPower"].as<float>();
if (value >= 0 && value <= 1000 && fabs(value - dst.opentherm.minPower) > 0.0001f) {
dst.opentherm.minPower = roundd(value, 2);
changed = true;
}
}
if (!src["opentherm"]["maxPower"].isNull()) {
float value = src["opentherm"]["maxPower"].as<float>();
if (value >= 0 && value <= 1000 && fabs(value - dst.opentherm.maxPower) > 0.0001f) {
dst.opentherm.maxPower = roundd(value, 2);
changed = true;
}
}
if (src["opentherm"]["filterNumValues"]["enable"].is<bool>()) {
bool value = src["opentherm"]["filterNumValues"]["enable"].as<bool>();
if (value != dst.opentherm.filterNumValues.enable) {
dst.opentherm.filterNumValues.enable = value;
changed = true;
}
}
if (!src["opentherm"]["filterNumValues"]["factor"].isNull()) {
float value = src["opentherm"]["filterNumValues"]["factor"].as<float>();
if (value > 0 && value <= 1 && fabs(value - dst.opentherm.filterNumValues.factor) > 0.0001f) {
dst.opentherm.filterNumValues.factor = roundd(value, 2);
changed = true;
}
}
if (src["opentherm"]["dhwPresent"].is<bool>()) {
bool value = src["opentherm"]["dhwPresent"].as<bool>();
@@ -790,8 +855,6 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
dst.opentherm.nativeHeatingControl = value;
if (value) {
dst.emergency.useEquitherm = false;
dst.emergency.usePid = false;
dst.equitherm.enable = false;
dst.pid.enable = false;
}
@@ -800,6 +863,15 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
}
}
if (src["opentherm"]["immergasFix"].is<bool>()) {
bool value = src["opentherm"]["immergasFix"].as<bool>();
if (value != dst.opentherm.immergasFix) {
dst.opentherm.immergasFix = value;
changed = true;
}
}
// mqtt
if (src["mqtt"]["enable"].is<bool>()) {
@@ -876,15 +948,6 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
// emergency
if (src["emergency"]["enable"].is<bool>()) {
bool value = src["emergency"]["enable"].as<bool>();
if (value != dst.emergency.enable) {
dst.emergency.enable = value;
changed = true;
}
}
if (!src["emergency"]["tresholdTime"].isNull()) {
unsigned short value = src["emergency"]["tresholdTime"].as<unsigned short>();
@@ -893,83 +956,49 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
changed = true;
}
}
}
if (src["emergency"]["useEquitherm"].is<bool>()) {
bool value = src["emergency"]["useEquitherm"].as<bool>();
if (!dst.opentherm.nativeHeatingControl && dst.sensors.outdoor.type != SensorType::MANUAL && dst.sensors.outdoor.type != SensorType::BLUETOOTH) {
if (value != dst.emergency.useEquitherm) {
dst.emergency.useEquitherm = value;
changed = true;
}
// equitherm
if (src["equitherm"]["enable"].is<bool>()) {
bool value = src["equitherm"]["enable"].as<bool>();
} else if (dst.emergency.useEquitherm) {
dst.emergency.useEquitherm = false;
changed = true;
}
if (dst.emergency.useEquitherm && dst.emergency.usePid) {
dst.emergency.usePid = false;
if (!dst.opentherm.nativeHeatingControl) {
if (value != dst.equitherm.enable) {
dst.equitherm.enable = value;
changed = true;
}
} else if (dst.equitherm.enable) {
dst.equitherm.enable = false;
changed = true;
}
}
if (src["emergency"]["usePid"].is<bool>()) {
bool value = src["emergency"]["usePid"].as<bool>();
if (!src["equitherm"]["n_factor"].isNull()) {
float value = src["equitherm"]["n_factor"].as<float>();
if (!dst.opentherm.nativeHeatingControl && dst.sensors.indoor.type != SensorType::MANUAL && dst.sensors.indoor.type != SensorType::BLUETOOTH) {
if (value != dst.emergency.usePid) {
dst.emergency.usePid = value;
changed = true;
}
} else if (dst.emergency.usePid) {
dst.emergency.usePid = false;
changed = true;
}
if (dst.emergency.usePid && dst.emergency.useEquitherm) {
dst.emergency.useEquitherm = false;
changed = true;
}
if (value > 0 && value <= 10 && fabs(value - dst.equitherm.n_factor) > 0.0001f) {
dst.equitherm.n_factor = roundd(value, 3);
changed = true;
}
}
if (src["emergency"]["onNetworkFault"].is<bool>()) {
bool value = src["emergency"]["onNetworkFault"].as<bool>();
if (!src["equitherm"]["k_factor"].isNull()) {
float value = src["equitherm"]["k_factor"].as<float>();
if (value != dst.emergency.onNetworkFault) {
dst.emergency.onNetworkFault = value;
changed = true;
}
if (value >= 0 && value <= 10 && fabs(value - dst.equitherm.k_factor) > 0.0001f) {
dst.equitherm.k_factor = roundd(value, 3);
changed = true;
}
}
if (src["emergency"]["onMqttFault"].is<bool>()) {
bool value = src["emergency"]["onMqttFault"].as<bool>();
if (!src["equitherm"]["t_factor"].isNull()) {
float value = src["equitherm"]["t_factor"].as<float>();
if (value != dst.emergency.onMqttFault) {
dst.emergency.onMqttFault = value;
changed = true;
}
}
if (src["emergency"]["onIndoorSensorDisconnect"].is<bool>()) {
bool value = src["emergency"]["onIndoorSensorDisconnect"].as<bool>();
if (value != dst.emergency.onIndoorSensorDisconnect) {
dst.emergency.onIndoorSensorDisconnect = value;
dst.emergency.usePid = false;
changed = true;
}
}
if (src["emergency"]["onOutdoorSensorDisconnect"].is<bool>()) {
bool value = src["emergency"]["onOutdoorSensorDisconnect"].as<bool>();
if (value != dst.emergency.onOutdoorSensorDisconnect) {
dst.emergency.onOutdoorSensorDisconnect = value;
dst.emergency.useEquitherm = false;
changed = true;
}
if (value >= 0 && value <= 10 && fabs(value - dst.equitherm.t_factor) > 0.0001f) {
dst.equitherm.t_factor = roundd(value, 3);
changed = true;
}
}
@@ -1020,72 +1049,33 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!src["pid"]["dt"].isNull()) {
unsigned short value = src["pid"]["dt"].as<unsigned short>();
if (value >= 30 && value <= 600 && value != dst.pid.dt) {
if (value >= 30 && value <= 1800 && value != dst.pid.dt) {
dst.pid.dt = value;
changed = true;
}
}
if (!src["pid"]["maxTemp"].isNull()) {
unsigned char value = src["pid"]["maxTemp"].as<unsigned char>();
if (isValidTemp(value, dst.system.unitSystem) && value > dst.pid.minTemp && value != dst.pid.maxTemp) {
dst.pid.maxTemp = value;
changed = true;
}
}
if (!src["pid"]["minTemp"].isNull()) {
unsigned char value = src["pid"]["minTemp"].as<unsigned char>();
short value = src["pid"]["minTemp"].as<short>();
if (isValidTemp(value, dst.system.unitSystem) && value < dst.pid.maxTemp && value != dst.pid.minTemp) {
if (isValidTemp(value, dst.system.unitSystem, dst.equitherm.enable ? -99.9f : 0.0f) && value != dst.pid.minTemp) {
dst.pid.minTemp = value;
changed = true;
}
}
if (!src["pid"]["maxTemp"].isNull()) {
short value = src["pid"]["maxTemp"].as<short>();
// equitherm
if (src["equitherm"]["enable"].is<bool>()) {
bool value = src["equitherm"]["enable"].as<bool>();
if (!dst.opentherm.nativeHeatingControl) {
if (value != dst.equitherm.enable) {
dst.equitherm.enable = value;
changed = true;
}
} else if (dst.equitherm.enable) {
dst.equitherm.enable = false;
if (isValidTemp(value, dst.system.unitSystem) && value != dst.pid.maxTemp) {
dst.pid.maxTemp = value;
changed = true;
}
}
if (!src["equitherm"]["n_factor"].isNull()) {
float value = src["equitherm"]["n_factor"].as<float>();
if (value > 0 && value <= 10 && fabs(value - dst.equitherm.n_factor) > 0.0001f) {
dst.equitherm.n_factor = roundd(value, 3);
changed = true;
}
}
if (!src["equitherm"]["k_factor"].isNull()) {
float value = src["equitherm"]["k_factor"].as<float>();
if (value >= 0 && value <= 10 && fabs(value - dst.equitherm.k_factor) > 0.0001f) {
dst.equitherm.k_factor = roundd(value, 3);
changed = true;
}
}
if (!src["equitherm"]["t_factor"].isNull()) {
float value = src["equitherm"]["t_factor"].as<float>();
if (value >= 0 && value <= 10 && fabs(value - dst.equitherm.t_factor) > 0.0001f) {
dst.equitherm.t_factor = roundd(value, 3);
changed = true;
}
if (dst.pid.maxTemp < dst.pid.minTemp) {
dst.pid.maxTemp = dst.pid.minTemp;
changed = true;
}
@@ -1111,12 +1101,21 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!src["heating"]["hysteresis"].isNull()) {
float value = src["heating"]["hysteresis"].as<float>();
if (value >= 0 && value <= 5 && fabs(value - dst.heating.hysteresis) > 0.0001f) {
if (value >= 0.0f && value <= 15.0f && fabs(value - dst.heating.hysteresis) > 0.0001f) {
dst.heating.hysteresis = roundd(value, 2);
changed = true;
}
}
if (!src["heating"]["turboFactor"].isNull()) {
float value = src["heating"]["turboFactor"].as<float>();
if (value >= 1.5f && value <= 10.0f && fabs(value - dst.heating.turboFactor) > 0.0001f) {
dst.heating.turboFactor = roundd(value, 2);
changed = true;
}
}
if (!src["heating"]["minTemp"].isNull()) {
unsigned char value = src["heating"]["minTemp"].as<unsigned char>();
@@ -1135,13 +1134,9 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
}
}
if (!src["heating"]["maxModulation"].isNull()) {
unsigned char value = src["heating"]["maxModulation"].as<unsigned char>();
if (value > 0 && value <= 100 && value != dst.heating.maxModulation) {
dst.heating.maxModulation = value;
changed = true;
}
if (dst.heating.maxTemp < dst.heating.minTemp) {
dst.heating.maxTemp = dst.heating.minTemp;
changed = true;
}
@@ -1158,7 +1153,7 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!src["dhw"]["minTemp"].isNull()) {
unsigned char value = src["dhw"]["minTemp"].as<unsigned char>();
if (value >= vars.parameters.dhwMinTemp && value < vars.parameters.dhwMaxTemp && value != dst.dhw.minTemp) {
if (value >= vars.parameters.dhwMinTemp && value != dst.dhw.minTemp) {
dst.dhw.minTemp = value;
changed = true;
}
@@ -1167,21 +1162,25 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!src["dhw"]["maxTemp"].isNull()) {
unsigned char value = src["dhw"]["maxTemp"].as<unsigned char>();
if (value > vars.parameters.dhwMinTemp && value <= vars.parameters.dhwMaxTemp && value != dst.dhw.maxTemp) {
if (value > vars.parameters.dhwMinTemp && value != dst.dhw.maxTemp) {
dst.dhw.maxTemp = value;
changed = true;
}
}
if (dst.dhw.maxTemp < dst.dhw.minTemp) {
dst.dhw.maxTemp = dst.dhw.minTemp;
changed = true;
}
// sensors
if (!src["sensors"]["outdoor"]["type"].isNull()) {
byte value = src["sensors"]["outdoor"]["type"].as<unsigned char>();
switch (value) {
case static_cast<byte>(SensorType::BOILER):
if (dst.sensors.outdoor.type != SensorType::BOILER) {
dst.sensors.outdoor.type = SensorType::BOILER;
case static_cast<byte>(SensorType::BOILER_OUTDOOR):
if (dst.sensors.outdoor.type != SensorType::BOILER_OUTDOOR) {
dst.sensors.outdoor.type = SensorType::BOILER_OUTDOOR;
changed = true;
}
break;
@@ -1189,7 +1188,6 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
case static_cast<byte>(SensorType::MANUAL):
if (dst.sensors.outdoor.type != SensorType::MANUAL) {
dst.sensors.outdoor.type = SensorType::MANUAL;
dst.emergency.useEquitherm = false;
changed = true;
}
break;
@@ -1205,7 +1203,6 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
case static_cast<byte>(SensorType::BLUETOOTH):
if (dst.sensors.outdoor.type != SensorType::BLUETOOTH) {
dst.sensors.outdoor.type = SensorType::BLUETOOTH;
dst.emergency.useEquitherm = false;
changed = true;
}
break;
@@ -1251,7 +1248,7 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!src["sensors"]["outdoor"]["offset"].isNull()) {
float value = src["sensors"]["outdoor"]["offset"].as<float>();
if (value >= -10 && value <= 10 && fabs(value - dst.sensors.outdoor.offset) > 0.0001f) {
if (value >= -20.0f && value <= 20.0f && fabs(value - dst.sensors.outdoor.offset) > 0.0001f) {
dst.sensors.outdoor.offset = roundd(value, 2);
changed = true;
}
@@ -1261,11 +1258,16 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
byte value = src["sensors"]["indoor"]["type"].as<unsigned char>();
switch (value) {
case static_cast<byte>(SensorType::BOILER_RETURN):
if (dst.sensors.indoor.type != SensorType::BOILER_RETURN) {
dst.sensors.indoor.type = SensorType::BOILER_RETURN;
changed = true;
}
break;
case static_cast<byte>(SensorType::MANUAL):
if (dst.sensors.indoor.type != SensorType::MANUAL) {
dst.sensors.indoor.type = SensorType::MANUAL;
dst.emergency.usePid = false;
dst.opentherm.nativeHeatingControl = false;
changed = true;
}
break;
@@ -1281,7 +1283,6 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
case static_cast<byte>(SensorType::BLUETOOTH):
if (dst.sensors.indoor.type != SensorType::BLUETOOTH) {
dst.sensors.indoor.type = SensorType::BLUETOOTH;
dst.emergency.usePid = false;
changed = true;
}
break;
@@ -1327,7 +1328,7 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!src["sensors"]["indoor"]["offset"].isNull()) {
float value = src["sensors"]["indoor"]["offset"].as<float>();
if (value >= -10 && value <= 10 && fabs(value - dst.sensors.indoor.offset) > 0.0001f) {
if (value >= -20.0f && value <= 20.0f && fabs(value - dst.sensors.indoor.offset) > 0.0001f) {
dst.sensors.indoor.offset = roundd(value, 2);
changed = true;
}
@@ -1400,12 +1401,133 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
}
}
}
// cascade control
if (src["cascadeControl"]["input"]["enable"].is<bool>()) {
bool value = src["cascadeControl"]["input"]["enable"].as<bool>();
if (value != dst.cascadeControl.input.enable) {
dst.cascadeControl.input.enable = value;
changed = true;
}
}
if (!src["cascadeControl"]["input"]["gpio"].isNull()) {
if (src["cascadeControl"]["input"]["gpio"].is<JsonString>() && src["cascadeControl"]["input"]["gpio"].as<JsonString>().size() == 0) {
if (dst.cascadeControl.input.gpio != GPIO_IS_NOT_CONFIGURED) {
dst.cascadeControl.input.gpio = GPIO_IS_NOT_CONFIGURED;
changed = true;
}
} else {
unsigned char value = src["cascadeControl"]["input"]["gpio"].as<unsigned char>();
if (GPIO_IS_VALID(value) && value != dst.cascadeControl.input.gpio) {
dst.cascadeControl.input.gpio = value;
changed = true;
}
}
}
if (src["cascadeControl"]["input"]["invertState"].is<bool>()) {
bool value = src["cascadeControl"]["input"]["invertState"].as<bool>();
if (value != dst.cascadeControl.input.invertState) {
dst.cascadeControl.input.invertState = value;
changed = true;
}
}
if (!src["cascadeControl"]["input"]["thresholdTime"].isNull()) {
unsigned short value = src["cascadeControl"]["input"]["thresholdTime"].as<unsigned short>();
if (value >= 5 && value <= 600) {
if (value != dst.cascadeControl.input.thresholdTime) {
dst.cascadeControl.input.thresholdTime = value;
changed = true;
}
}
}
if (src["cascadeControl"]["output"]["enable"].is<bool>()) {
bool value = src["cascadeControl"]["output"]["enable"].as<bool>();
if (value != dst.cascadeControl.output.enable) {
dst.cascadeControl.output.enable = value;
changed = true;
}
}
if (!src["cascadeControl"]["output"]["gpio"].isNull()) {
if (src["cascadeControl"]["output"]["gpio"].is<JsonString>() && src["cascadeControl"]["output"]["gpio"].as<JsonString>().size() == 0) {
if (dst.cascadeControl.output.gpio != GPIO_IS_NOT_CONFIGURED) {
dst.cascadeControl.output.gpio = GPIO_IS_NOT_CONFIGURED;
changed = true;
}
} else {
unsigned char value = src["cascadeControl"]["output"]["gpio"].as<unsigned char>();
if (GPIO_IS_VALID(value) && value != dst.cascadeControl.output.gpio) {
dst.cascadeControl.output.gpio = value;
changed = true;
}
}
}
if (src["cascadeControl"]["output"]["invertState"].is<bool>()) {
bool value = src["cascadeControl"]["output"]["invertState"].as<bool>();
if (value != dst.cascadeControl.output.invertState) {
dst.cascadeControl.output.invertState = value;
changed = true;
}
}
if (!src["cascadeControl"]["output"]["thresholdTime"].isNull()) {
unsigned short value = src["cascadeControl"]["output"]["thresholdTime"].as<unsigned short>();
if (value >= 5 && value <= 600) {
if (value != dst.cascadeControl.output.thresholdTime) {
dst.cascadeControl.output.thresholdTime = value;
changed = true;
}
}
}
if (src["cascadeControl"]["output"]["onFault"].is<bool>()) {
bool value = src["cascadeControl"]["output"]["onFault"].as<bool>();
if (value != dst.cascadeControl.output.onFault) {
dst.cascadeControl.output.onFault = value;
changed = true;
}
}
if (src["cascadeControl"]["output"]["onLossConnection"].is<bool>()) {
bool value = src["cascadeControl"]["output"]["onLossConnection"].as<bool>();
if (value != dst.cascadeControl.output.onLossConnection) {
dst.cascadeControl.output.onLossConnection = value;
changed = true;
}
}
if (src["cascadeControl"]["output"]["onEnabledHeating"].is<bool>()) {
bool value = src["cascadeControl"]["output"]["onEnabledHeating"].as<bool>();
if (value != dst.cascadeControl.output.onEnabledHeating) {
dst.cascadeControl.output.onEnabledHeating = value;
changed = true;
}
}
}
// force check emergency target
{
float value = !src["emergency"]["target"].isNull() ? src["emergency"]["target"].as<float>() : dst.emergency.target;
bool noRegulators = !dst.opentherm.nativeHeatingControl && !dst.emergency.useEquitherm && !dst.emergency.usePid;
bool noRegulators = !dst.opentherm.nativeHeatingControl;
bool valid = isValidTemp(
value,
dst.system.unitSystem,
@@ -1496,7 +1618,9 @@ void varsToJson(const Variables& src, JsonVariant dst) {
dst["sensors"]["modulation"] = roundd(src.sensors.modulation, 2);
dst["sensors"]["pressure"] = roundd(src.sensors.pressure, 2);
dst["sensors"]["dhwFlowRate"] = roundd(src.sensors.dhwFlowRate, 2);
dst["sensors"]["power"] = roundd(src.sensors.power, 2);
dst["sensors"]["faultCode"] = src.sensors.faultCode;
dst["sensors"]["diagnosticCode"] = src.sensors.diagnosticCode;
dst["sensors"]["rssi"] = src.sensors.rssi;
dst["sensors"]["uptime"] = millis() / 1000ul;
dst["sensors"]["outdoor"]["connected"] = src.sensors.outdoor.connected;
@@ -1515,6 +1639,9 @@ void varsToJson(const Variables& src, JsonVariant dst) {
dst["temperatures"]["dhw"] = roundd(src.temperatures.dhw, 2);
dst["temperatures"]["exhaust"] = roundd(src.temperatures.exhaust, 2);
dst["cascadeControl"]["input"] = src.cascadeControl.input;
dst["cascadeControl"]["output"] = src.cascadeControl.output;
dst["parameters"]["heatingEnabled"] = src.parameters.heatingEnabled;
dst["parameters"]["heatingMinTemp"] = src.parameters.heatingMinTemp;
dst["parameters"]["heatingMaxTemp"] = src.parameters.heatingMaxTemp;

View File

@@ -9,6 +9,13 @@
"releases": "Releases"
},
"dbm": "dBm",
"kw": "kW",
"time": {
"days": "d.",
"hours": "h.",
"min": "min.",
"sec": "sec."
},
"button": {
"upgrade": "Upgrade",
@@ -38,7 +45,8 @@
"title": "Build",
"version": "Version",
"date": "Date",
"sdk": "Core/SDK"
"core": "Core",
"sdk": "SDK"
},
"uptime": "Uptime",
"memory": {
@@ -93,13 +101,17 @@
"outdoorSensorHumidity": "Outdoor sensor humidity",
"outdoorSensorBattery": "Outdoor sensor battery",
"indoorSensorConnected": "Indoor sensor connected",
"cascadeControlInput": "Cascade control (input)",
"cascadeControlOutput": "Cascade control (output)",
"indoorSensorRssi": "Indoor sensor RSSI",
"indoorSensorHumidity": "Indoor sensor humidity",
"indoorSensorBattery": "Indoor sensor battery",
"modulation": "Modulation",
"pressure": "Pressure",
"dhwFlowRate": "DHW flow rate",
"power": "Current power",
"faultCode": "Fault code",
"diagCode": "Diagnostic code",
"indoorTemp": "Indoor temp",
"outdoorTemp": "Outdoor temp",
"heatingTemp": "Heating temp",
@@ -160,22 +172,21 @@
"heating": "Heating settings",
"dhw": "DHW settings",
"emergency": "Emergency mode settings",
"emergency.events": "Events",
"emergency.regulators": "Using regulators",
"equitherm": "Equitherm settings",
"pid": "PID settings",
"ot": "OpenTherm settings",
"ot.options": "Options",
"mqtt": "MQTT settings",
"outdorSensor": "Outdoor sensor settings",
"indoorSensor": "Indoor sensor settings",
"extPump": "External pump settings"
"extPump": "External pump settings",
"cascadeControl": "Cascade control settings"
},
"enable": "Enable",
"note": {
"restart": "After changing these settings, the device must be restarted for the changes to take effect.",
"blankNotUse": "blank - not use"
"blankNotUse": "blank - not use",
"bleDevice": "BLE device can be used <u>only</u> with some ESP32 boards with BLE support!"
},
"temp": {
@@ -194,13 +205,10 @@
"metric": "Metric <small>(celsius, liters, bar)</small>",
"imperial": "Imperial <small>(fahrenheit, gallons, psi)</small>",
"statusLedGpio": "Status LED GPIO",
"debug": "Debug mode",
"logLevel": "Log level",
"serial": {
"enable": "Enable Serial port",
"baud": {
"title": "Serial port baud rate",
"note": "Available: 9600, 19200, 38400, 57600, 74880, 115200"
}
"baud": "Serial port baud rate"
},
"telnet": {
"enable": "Enable Telnet",
@@ -212,30 +220,18 @@
},
"heating": {
"hyst": "Hysteresis",
"maxMod": "Max modulation level"
"hyst": "Hysteresis <small>(in degrees)</small>",
"turboFactor": "Turbo mode coeff."
},
"emergency": {
"desc": "<b>!</b> Emergency mode can be useful <u>only</u> when using Equitherm and/or PID (when normal work) and when reporting indoor/outdoor temperature via MQTT/API/BLE. In this mode, sensor values that are reported via MQTT/API/BLE are not used.",
"desc": "Emergency mode is activated automatically when «PID» or «Equitherm» cannot calculate the heat carrier setpoint:<br />- if «Equitherm» is enabled and the outdoor temperature sensor is disconnected;<br />- if «PID» or OT option <i>«Native heating control»</i> is enabled and the indoor temperature sensor is disconnected.<br /><b>Note:</b> On network fault or MQTT fault, sensors with <i>«Manual via MQTT/API»</i> type will be in DISCONNECTED state.",
"target": {
"title": "Target temperature",
"note": "<u>Indoor temperature</u> if Equitherm or PID is <b>enabled</b><br /><u>Heat carrier temperature</u> if Equitherm and PID <b>is disabled</b>"
"note": "<b>Important:</b> <u>Target indoor temperature</u> if OT option <i>«Native heating control»</i> is enabled.<br />In all other cases, the <u>target heat carrier temperature</u>."
},
"treshold": "Treshold time <small>(sec)</small>",
"events": {
"network": "On network fault",
"mqtt": "On MQTT fault",
"indoorSensorDisconnect": "On loss connection with indoor sensor",
"outdoorSensorDisconnect": "On loss connection with outdoor sensor"
},
"regulators": {
"equitherm": "Equitherm <small>(requires at least an external (DS18B20) or boiler <u>outdoor</u> sensor)</small>",
"pid": "PID <small>(requires at least an external (DS18B20) <u>indoor</u> sensor)</small>"
}
"treshold": "Treshold time <small>(sec)</small>"
},
"equitherm": {
@@ -251,16 +247,47 @@
"p": "P factor",
"i": "I factor",
"d": "D factor",
"dt": "DT <small>in seconds</small>"
"dt": "DT <small>in seconds</small>",
"noteMinMaxTemp": "<b>Important:</b> When using «Equitherm» and «PID» at the same time, the min and max temperatures limit the influence on the «Equitherm» result temperature.<br />Thus, if the min temperature is set to -15 and the max temperature is set to 15, then the final heat carrier setpoint will be from <code>equitherm_result - 15</code> to <code>equitherm_result + 15</code>."
},
"ot": {
"advanced": "Advanced Settings",
"inGpio": "In GPIO",
"outGpio": "Out GPIO",
"ledGpio": "RX LED GPIO",
"memberIdCode": "Master MemberID code",
"maxMod": "Max modulation level",
"pressureFactor": {
"title": "Coeff. pressure correction",
"note": "If the pressure displayed is <b>X10</b> from the real one, set the <b>0.1</b>."
},
"dhwFlowRateFactor": {
"title": "Coeff. DHW flow rate correction",
"note": "If the DHW flow rate displayed is <b>X10</b> from the real one, set the <b>0.1</b>."
},
"minPower": {
"title": "Min boiler power <small>(kW)</small>",
"note": "This value is at 0-1% boiler modulation level. Typically found in the boiler specification as \"minimum useful heat output\"."
},
"maxPower": {
"title": "Max boiler power <small>(kW)</small>",
"note": "<b>0</b> - try detect automatically. Typically found in the boiler specification as \"maximum useful heat output\"."
},
"fnv": {
"desc": "Filtering numeric values",
"enable": {
"title": "Enable filtering",
"note": "It can be useful if there is a lot of sharp noise on the charts. The filter used is \"Running Average\"."
},
"factor": {
"title": "Filtration coeff.",
"note": "The lower the value, the smoother and <u>longer</u> the change in numeric values."
}
},
"options": {
"desc": "Options",
"dhwPresent": "DHW present",
"summerWinterMode": "Summer/winter mode",
"heatingCh2Enabled": "Heating CH2 always enabled",
@@ -268,18 +295,13 @@
"dhwToCh2": "Duplicate DHW to CH2",
"dhwBlocking": "DHW blocking",
"modulationSyncWithHeating": "Sync modulation with heating",
"getMinMaxTemp": "Get min/max temp from boiler"
},
"faultState": {
"gpio": "Fault state GPIO",
"note": "Can be useful to switch on another boiler <u>via relay</u>. Blank - not use.",
"invert": "Invert fault state"
"getMinMaxTemp": "Get min/max temp from boiler",
"immergasFix": "Fix for Immergas boilers"
},
"nativeHeating": {
"title": "Native heating control (boiler)",
"note": "Works <u>ONLY</u> if the boiler requires the desired room temperature and regulates the temperature of the coolant itself. Not compatible with PID and Equitherm regulators and hysteresis in firmware."
"note": "Works <u>ONLY</u> if the boiler requires the desired room temperature and regulates the temperature of the coolant itself. Not compatible with PID and Equitherm regulators in firmware."
}
},
@@ -296,17 +318,15 @@
"tempSensor": {
"source": {
"type": "Source type",
"boiler": "From boiler via OpenTherm",
"boilerOutdoor": "From boiler via OpenTherm",
"boilerReturn": "Return heat carrier temp via OpenTherm",
"manual": "Manual via MQTT/API",
"ext": "External (DS18B20)",
"ble": "BLE device <i>(ONLY for some ESP32 which support BLE)</i>"
"ble": "BLE device"
},
"gpio": "GPIO",
"offset": "Temp offset <small>(calibration)</small>",
"bleAddress": {
"title": "BLE address",
"note": "ONLY for some ESP32 which support BLE"
}
"bleAddress": "BLE device MAC address"
},
"extPump": {
@@ -315,6 +335,29 @@
"postCirculationTime": "Post circulation time <small>(min)</small>",
"antiStuckInterval": "Anti stuck interval <small>(days)</small>",
"antiStuckTime": "Anti stuck time <small>(min)</small>"
},
"cascadeControl": {
"input": {
"desc": "Can be used to turn on the heating only if another boiler is faulty. The other boiler controller must change the state of the GPIO input in the event of a fault.",
"enable": "Enable input",
"gpio": "GPIO",
"invertState": "Invert GPIO state",
"thresholdTime": "State change threshold time <small>(sec)</small>"
},
"output": {
"desc": "Can be used to switch on another boiler <u>via relay</u>.",
"enable": "Enable output",
"gpio": "GPIO",
"invertState": "Invert GPIO state",
"thresholdTime": "State change threshold time <small>(sec)</small>",
"events": {
"desc": "Events",
"onFault": "If the fault state is active",
"onLossConnection": "If the connection via Opentherm is lost",
"onEnabledHeating": "If heating is enabled"
}
}
}
},

View File

@@ -9,6 +9,13 @@
"releases": "Релизы"
},
"dbm": "дБм",
"kw": "кВт",
"time": {
"days": "д.",
"hours": "ч.",
"min": "мин.",
"sec": "сек."
},
"button": {
"upgrade": "Обновить",
@@ -38,7 +45,8 @@
"title": "Билд",
"version": "Версия",
"date": "Дата",
"sdk": "Ядро/SDK"
"core": "Ядро",
"sdk": "SDK"
},
"uptime": "Аптайм",
"memory": {
@@ -93,13 +101,17 @@
"outdoorSensorHumidity": "Влажность с наруж. датчика темп.",
"outdoorSensorBattery": "Заряд наруж. датчика темп.",
"indoorSensorConnected": "Датчик внутр. темп.",
"cascadeControlInput": "Каскадное управление (вход)",
"cascadeControlOutput": "Каскадное управление (выход)",
"indoorSensorRssi": "RSSI датчика внутр. темп.",
"indoorSensorHumidity": "Влажность с внутр. датчика темп.",
"indoorSensorBattery": "Заряд внутр. датчика темп.",
"modulation": "Уровень модуляции",
"pressure": "Давление",
"dhwFlowRate": "Расход ГВС",
"power": "Текущая мощность",
"faultCode": "Код ошибки",
"diagCode": "Диагностический код",
"indoorTemp": "Внутренняя темп.",
"outdoorTemp": "Наружная темп.",
"heatingTemp": "Темп. отопления",
@@ -160,22 +172,21 @@
"heating": "Настройки отопления",
"dhw": "Настройки ГВС",
"emergency": "Настройки аварийного режима",
"emergency.events": "События",
"emergency.regulators": "Используемые регуляторы",
"equitherm": "Настройки ПЗА",
"pid": "Настройки ПИД",
"ot": "Настройки OpenTherm",
"ot.options": "Опции",
"mqtt": "Настройки MQTT",
"outdorSensor": "Настройки наружного датчика температуры",
"indoorSensor": "Настройки внутреннего датчика температуры",
"extPump": "Настройки дополнительного насоса"
"extPump": "Настройки дополнительного насоса",
"cascadeControl": "Настройки каскадного управления"
},
"enable": "Вкл",
"note": {
"restart": "После изменения этих настроек устройство необходимо перезагрузить, чтобы изменения вступили в силу.",
"blankNotUse": "пусто - не использовать"
"blankNotUse": "пусто - не использовать",
"bleDevice": "BLE устройство можно использовать <u>только</u> с некоторыми платами ESP32, которые поддерживают BLE!"
},
"temp": {
@@ -194,13 +205,10 @@
"metric": "Метрическая <small>(цильсии, литры, бары)</small>",
"imperial": "Imperial <small>(фаренгейты, галлоны, psi)</small>",
"statusLedGpio": "Статус LED GPIO",
"debug": "Отладка",
"logLevel": "Уровень логирования",
"serial": {
"enable": "Вкл. Serial порт",
"baud": {
"title": "Скорость Serial порта",
"note": "Доступно: 9600, 19200, 38400, 57600, 74880, 115200"
}
"baud": "Скорость Serial порта"
},
"telnet": {
"enable": "Вкл. Telnet",
@@ -212,20 +220,21 @@
},
"heating": {
"hyst": "Гистерезис",
"maxMod": "Макс. уровень модуляции"
"hyst": "Гистерезис <small>(в градусах)</small>",
"turboFactor": "Коэфф. турбо режима"
},
"emergency": {
"desc": "<b>!</b> Аварийный режим может быть полезен <u>только</u> при использовании ПЗА и/или ПИД и при передачи наружной/внутренней температуры через MQTT/API/BLE. В этом режиме значения датчиков, передаваемые через MQTT/API/BLE, не используются.",
"desc": "Аварийный режим активируется автоматически, если «ПИД» или «ПЗА» не могут рассчитать уставку теплоносителя:<br />- если «ПЗА» включен и датчик наружной температуры отключен;<br />- если включен «ПИД» или OT опция <i>«Передать управление отоплением котлу»</i> и датчик внутренней температуры отключен.<br /><b>Примечание:</b> При сбое сети или MQTT датчики с типом <i>«Вручную через MQTT/API»</i> будут находиться в состоянии ОТКЛЮЧЕН.",
"target": {
"title": "Целевая температура",
"note": "Целевая <u>внутренняя температура</u> если ПЗА и/или ПИД <b>включены</b><br />Целевая <u>температура теплоносителя</u> если ПЗА и ПИД <b>выключены</b>"
"note": "<b>Важно:</b> <u>Целевая температура в помещении</u>, если включена ОТ опция <i>«Передать управление отоплением котлу»</i>.<br />Во всех остальных случаях <u>целевая температура теплоносителя</u>."
},
"treshold": "Пороговое время включения <small>(сек)</small>",
"events": {
"desc": "События",
"network": "При отключении сети",
"mqtt": "При отключении MQTT",
"indoorSensorDisconnect": "При потере связи с датчиком внутренней темп.",
@@ -233,6 +242,7 @@
},
"regulators": {
"desc": "Используемые регуляторы",
"equitherm": "ПЗА <small>(требуется внешний (DS18B20) или подключенный к котлу датчик <u>наружной</u> температуры)</small>",
"pid": "ПИД <small>(требуется внешний (DS18B20) датчик <u>внутренней</u> температуры)</small>"
}
@@ -251,16 +261,47 @@
"p": "Коэффициент P",
"i": "Коэффициент I",
"d": "Коэффициент D",
"dt": "DT <small>в секундах</small>"
"dt": "DT <small>(сек)</small>",
"noteMinMaxTemp": "<b>Важно:</b> При использовании «ПЗА» и «ПИД» одновременно, мин. и макс. температура ограничивает влияние на расчётную температуру «ПЗА».<br />Таким образом, если мин. температура задана как -15, а макс. как 15, то конечная температура теплоносителя будет от <code>equitherm_result - 15</code> до <code>equitherm_result + 15</code>."
},
"ot": {
"advanced": "Дополнительные настройки",
"inGpio": "Вход GPIO",
"outGpio": "Выход GPIO",
"ledGpio": "RX LED GPIO",
"memberIdCode": "Master MemberID код",
"maxMod": "Макс. уровень модуляции",
"pressureFactor": {
"title": "Коэфф. коррекции давления",
"note": "Если давление отображается <b>Х10</b> от реального, установите значение <b>0.1</b>."
},
"dhwFlowRateFactor": {
"title": "Коэфф. коррекции потока ГВС",
"note": "Если поток ГВС отображается <b>Х10</b> от реального, установите значение <b>0.1</b>."
},
"minPower": {
"title": "Мин. мощность котла <small>(кВт)</small>",
"note": "Это значение соответствует уровню модуляции котла 01%. Обычно можно найти в спецификации котла как \"минимальная полезная тепловая мощность\"."
},
"maxPower": {
"title": "Макс. мощность котла <small>(кВт)</small>",
"note": "<b>0</b> - попробовать определить автоматически. Обычно можно найти в спецификации котла как \"максимальная полезная тепловая мощность\"."
},
"fnv": {
"desc": "Фильтрация числовых значений",
"enable": {
"title": "Включить фильтрацию",
"note": "Может быть полезно, если на графиках много резкого шума. В качестве фильтра используется \"бегущее среднее\"."
},
"factor": {
"title": "Коэфф. фильтрации",
"note": "Чем меньше коэф., тем плавнее и <u>дольше</u> изменение числовых значений."
}
},
"options": {
"desc": "Опции",
"dhwPresent": "Контур ГВС",
"summerWinterMode": "Летний/зимний режим",
"heatingCh2Enabled": "Канал 2 отопления всегда вкл.",
@@ -268,18 +309,13 @@
"dhwToCh2": "Дублировать параметры ГВС в канал 2",
"dhwBlocking": "DHW blocking",
"modulationSyncWithHeating": "Синхронизировать модуляцию с отоплением",
"getMinMaxTemp": "Получать мин. и макс. температуру от котла"
},
"faultState": {
"gpio": "Fault state GPIO",
"note": "Can be useful to switch on another boiler <u>via relay</u>. Blank - not use.",
"invert": "Invert fault state"
"getMinMaxTemp": "Получать мин. и макс. температуру от котла",
"immergasFix": "Фикс для котлов Immergas"
},
"nativeHeating": {
"title": "Передать управление отоплением котлу",
"note": "Работает <u>ТОЛЬКО</u> если котел требует и принимает целевую температуру в помещении и сам регулирует температуру теплоносителя на основе встроенного режима кривых. Несовместимо с ПИД и ПЗА, а также с гистерезисом встроенного ПО."
"note": "Работает <u>ТОЛЬКО</u> если котел требует и принимает целевую температуру в помещении и сам регулирует температуру теплоносителя на основе встроенного режима кривых. Несовместимо с ПИД и ПЗА."
}
},
@@ -290,23 +326,21 @@
"user": "Имя пользователя",
"password": "Пароль",
"prefix": "Префикс",
"interval": "Интервал публикации (в секундах)"
"interval": "Интервал публикации <small>(сек)</small>"
},
"tempSensor": {
"source": {
"type": "Источник данных",
"boiler": "От котла через OpenTherm",
"boilerOutdoor": "От котла через OpenTherm",
"boilerReturn": "Температура обратки через OpenTherm",
"manual": "Вручную через MQTT/API",
"ext": "Внешний датчик (DS18B20)",
"ble": "BLE устройство <i>(ТОЛЬКО для некоторых плат ESP32 с поддержкой BLE)</i>"
"ble": "BLE устройство"
},
"gpio": "GPIO",
"offset": "Смещение температуры <small>(калибровка)</small>",
"bleAddress": {
"title": "BLE адрес",
"note": "ТОЛЬКО для некоторых плат ESP32 с поддержкой BLE"
}
"bleAddress": "MAC адрес BLE устройства"
},
"extPump": {
@@ -315,6 +349,29 @@
"postCirculationTime": "Время постциркуляции <small>(в минутах)</small>",
"antiStuckInterval": "Интервал защиты от блокировки <small>(в днях)</small>",
"antiStuckTime": "Время работы насоса <small>(в минутах)</small>"
},
"cascadeControl": {
"input": {
"desc": "Может использоваться для включения отопления только при неисправности другого котла. Контроллер другого котла должен изменить состояние входа GPIO в случае неисправности.",
"enable": "Включить вход",
"gpio": "GPIO",
"invertState": "Инвертировать состояние GPIO",
"thresholdTime": "Пороговое время изменения состояния <small>(сек)</small>"
},
"output": {
"desc": "Может использоваться для включения другого котла <u>через реле</u>.",
"enable": "Включить выход",
"gpio": "GPIO",
"invertState": "Инвертировать состояние GPIO",
"thresholdTime": "Пороговое время изменения состояния <small>(сек)</small>",
"events": {
"title": "События",
"onFault": "Если состояние fault (ошибки) активно",
"onLossConnection": "Если соединение по OpenTherm потеряно",
"onEnabledHeating": "Если отопление включено"
}
}
}
},

View File

@@ -134,6 +134,14 @@
<th scope="row" data-i18n>dashboard.state.indoorSensorConnected</th>
<td><input type="radio" id="indoor-sensor-connected" aria-invalid="false" checked disabled /></td>
</tr>
<tr>
<th scope="row" data-i18n>dashboard.state.cascadeControlInput</th>
<td><input type="radio" id="cc-input" aria-invalid="false" checked disabled /></td>
</tr>
<tr>
<th scope="row" data-i18n>dashboard.state.cascadeControlOutput</th>
<td><input type="radio" id="cc-output" aria-invalid="false" checked disabled /></td>
</tr>
<tr>
<th scope="row" data-i18n>dashboard.state.indoorSensorRssi</th>
<td><b id="indoor-sensor-rssi"></b> <span data-i18n>dbm</span></td>
@@ -158,10 +166,18 @@
<th scope="row" data-i18n>dashboard.state.dhwFlowRate</th>
<td><b id="ot-dhw-flow-rate"></b> <span class="volume-unit"></span>/min</td>
</tr>
<tr>
<th scope="row" data-i18n>dashboard.state.power</th>
<td><b id="ot-power"></b> <span data-i18n>kw</span></td>
</tr>
<tr>
<th scope="row" data-i18n>dashboard.state.faultCode</th>
<td><b id="ot-fault-code"></b></td>
</tr>
<tr>
<th scope="row" data-i18n>dashboard.state.diagCode</th>
<td><b id="ot-diag-code"></b></td>
</tr>
<tr>
<th scope="row" data-i18n>dashboard.state.indoorTemp</th>
<td><b id="indoor-temp"></b> <span class="temp-unit"></span></td>
@@ -419,6 +435,8 @@
setState('#ot-external-pump', result.states.externalPump);
setState('#outdoor-sensor-connected', result.sensors.outdoor.connected);
setState('#indoor-sensor-connected', result.sensors.indoor.connected);
setState('#cc-input', result.cascadeControl.input);
setState('#cc-output', result.cascadeControl.output);
setValue('#outdoor-sensor-rssi', result.sensors.outdoor.rssi);
setValue('#outdoor-sensor-humidity', result.sensors.outdoor.humidity);
@@ -430,7 +448,19 @@
setValue('#ot-modulation', result.sensors.modulation);
setValue('#ot-pressure', result.sensors.pressure);
setValue('#ot-dhw-flow-rate', result.sensors.dhwFlowRate);
setValue('#ot-fault-code', result.sensors.faultCode ? ("E" + result.sensors.faultCode) : "-");
setValue('#ot-power', result.sensors.power);
setValue(
'#ot-fault-code',
result.sensors.faultCode
? (result.sensors.faultCode + " (0x" + dec2hex(result.sensors.faultCode) + ")")
: "-"
);
setValue(
'#ot-diag-code',
result.sensors.diagnosticCode
? (result.sensors.diagnosticCode + " (0x" + dec2hex(result.sensors.diagnosticCode) + ")")
: "-"
);
setValue('#indoor-temp', result.temperatures.indoor);
setValue('#outdoor-temp', result.temperatures.outdoor);

View File

@@ -101,36 +101,40 @@
<td>
Env: <b id="build-env"></b><br />
<span data-i18n>index.system.build.date</span>: <b id="build-date"></b><br />
<span data-i18n>index.system.build.sdk</span>: <b id="core-version"></b>
<span data-i18n>index.system.build.core</span>: <b id="build-core"></b><br />
<span data-i18n>index.system.build.sdk</span>: <b id="build-sdk"></b>
</td>
</tr>
<tr>
<th scope="row" data-i18n>index.system.uptime</th>
<td>
<b id="uptime-days"></b> days,
<b id="uptime-hours"></b> hours,
<b id="uptime-min"></b> min.,
<b id="uptime-sec"></b> sec.
<b id="uptime-days"></b> <span data-i18n>time.days</span>,
<b id="uptime-hours"></b> <span data-i18n>time.hours</span>,
<b id="uptime-min"></b> <span data-i18n>time.min</span>,
<b id="uptime-sec"></b> <span data-i18n>time.sec</span>
</td>
</tr>
<tr>
<th scope="row" data-i18n>index.system.memory.title</th>
<td>
<b id="free-heap"></b> of <b id="total-heap"></b> bytes (<span data-i18n>index.system.memory.min</span>: <b id="min-free-heap"></b> bytes)<br />
<span data-i18n>index.system.memory.maxFreeBlock</span>: <b id="max-free-block-heap"></b> bytes (<span data-i18n>index.system.memory.min</span>: <b id="min-max-free-block-heap"></b> bytes)
<b id="heap-free"></b> of <b id="heap-total"></b> bytes (<span data-i18n>index.system.memory.min</span>: <b id="heap-min-free"></b> bytes)<br />
<span data-i18n>index.system.memory.maxFreeBlock</span>: <b id="heap-max-free-block"></b> bytes (<span data-i18n>index.system.memory.min</span>: <b id="heap-min-max-free-block"></b> bytes)
</td>
</tr>
<tr>
<th scope="row" data-i18n>index.system.board</th>
<td>
<span data-i18n>index.system.chip.model</span>: <b id="chip-model"></b> (rev. <span id="chip-revision"></span>)<br />
<span data-i18n>index.system.chip.cores</span>: <b id="chip-cores"></b>, <span data-i18n>index.system.chip.freq</span>: <b id="cpu-freq"></b> mHz<br />
<span data-i18n>index.system.chip.model</span>: <b id="chip-model"></b> (rev. <span id="chip-rev"></span>)<br />
<span data-i18n>index.system.chip.cores</span>: <b id="chip-cores"></b>, <span data-i18n>index.system.chip.freq</span>: <b id="chip-freq"></b> mHz<br />
<span data-i18n>index.system.flash.size</span>: <b id="flash-size"></b> MB (<span data-i18n>index.system.flash.realSize</span>: <b id="flash-real-size"></b> MB)
</td>
</tr>
<tr>
<th scope="row" data-i18n>index.system.lastResetReason</th>
<td><b id="reset-reason"></b></td>
<td>
<b id="reset-reason"></b><br />
<a href="/api/debug" target="_blank"><small>Save debug data</small></a>
</td>
</tr>
</tbody>
</table>
@@ -170,6 +174,13 @@
}
const result = await response.json();
setValue('#reset-reason', result.system.resetReason);
setValue('#uptime', result.system.uptime);
setValue('#uptime-days', Math.floor(result.system.uptime / 86400));
setValue('#uptime-hours', Math.floor(result.system.uptime % 86400 / 3600));
setValue('#uptime-min', Math.floor(result.system.uptime % 3600 / 60));
setValue('#uptime-sec', Math.floor(result.system.uptime % 60));
setValue('#network-hostname', result.network.hostname);
setValue('#network-mac', result.network.mac);
setState('#network-connected', result.network.connected);
@@ -181,28 +192,24 @@
setValue('#network-dns', result.network.dns);
setBusy('#main-busy', '#main-table', false);
setValue('#build-version', result.system.buildVersion);
setValue('#build-date', result.system.buildDate);
setValue('#build-env', result.system.buildEnv);
setValue('#uptime', result.system.uptime);
setValue('#uptime-days', Math.floor(result.system.uptime / 86400));
setValue('#uptime-hours', Math.floor(result.system.uptime % 86400 / 3600));
setValue('#uptime-min', Math.floor(result.system.uptime % 3600 / 60));
setValue('#uptime-sec', Math.floor(result.system.uptime % 60));
setValue('#total-heap', result.system.totalHeap);
setValue('#free-heap', result.system.freeHeap);
setValue('#min-free-heap', result.system.minFreeHeap);
setValue('#max-free-block-heap', result.system.maxFreeBlockHeap);
setValue('#min-max-free-block-heap', result.system.minMaxFreeBlockHeap);
setValue('#reset-reason', result.system.resetReason);
setValue('#build-version', result.build.version);
setValue('#build-date', result.build.date);
setValue('#build-env', result.build.env);
setValue('#build-core', result.build.core);
setValue('#build-sdk', result.build.sdk);
setValue('#chip-model', result.system.chipModel);
setValue('#chip-revision', result.system.chipRevision);
setValue('#chip-cores', result.system.chipCores);
setValue('#cpu-freq', result.system.cpuFreq);
setValue('#core-version', result.system.coreVersion);
setValue('#flash-size', result.system.flashSize / 1024 / 1024);
setValue('#flash-real-size', result.system.flashRealSize / 1024 / 1024);
setValue('#heap-total', result.heap.total);
setValue('#heap-free', result.heap.free);
setValue('#heap-min-free', result.heap.minFree);
setValue('#heap-max-free-block', result.heap.maxFreeBlock);
setValue('#heap-min-max-free-block', result.heap.minMaxFreeBlock);
setValue('#chip-model', result.chip.model);
setValue('#chip-rev', result.chip.rev);
setValue('#chip-cores', result.chip.cores);
setValue('#chip-freq', result.chip.freq);
setValue('#flash-size', result.flash.size / 1024 / 1024);
setValue('#flash-real-size', result.flash.realSize / 1024 / 1024);
setBusy('#system-busy', '#system-table', false);

View File

@@ -94,11 +94,6 @@
<fieldset>
<legend data-i18n>settings.section.diag</legend>
<label for="system-debug">
<input type="checkbox" id="system-debug" name="system[debug]" value="true">
<span data-i18n>settings.system.debug</span>
</label>
<label for="system-serial-enable">
<input type="checkbox" id="system-serial-enable" name="system[serial][enable]" value="true">
<span data-i18n>settings.system.serial.enable</span>
@@ -109,11 +104,31 @@
<span data-i18n>settings.system.telnet.enable</span>
</label>
<label for="system-log-level">
<span data-i18n>settings.system.logLevel</span>
<select id="system-log-level" name="system[logLevel]">
<option value="0">SILENT</option>
<option value="1">FATAL</option>
<option value="2">ERROR</option>
<option value="3">WARNING</option>
<option value="4">INFO</option>
<option value="5">NOTICE</option>
<option value="6">TRACE</option>
<option value="7">VERBOSE</option>
</select>
</label>
<div class="grid">
<label for="system-serial-baudrate">
<span data-i18n>settings.system.serial.baud.title</span>
<input type="number" inputmode="numeric" id="system-serial-baudrate" name="system[serial][baudrate]" min="9600" max="115200" step="1" required>
<small data-i18n>settings.system.serial.baud.note</small>
<span data-i18n>settings.system.serial.baud</span>
<select id="system-serial-baudrate" name="system[serial][baudrate]" required>
<option value="9600">9600</option>
<option value="19200">19200</option>
<option value="38400">38400</option>
<option value="57600">57600</option>
<option value="74880">74880</option>
<option value="115200">115200</option>
</select>
</label>
<label for="system-telnet-port">
@@ -157,9 +172,9 @@
<input type="number" inputmode="numeric" id="heating-hysteresis" name="heating[hysteresis]" min="0" max="5" step="0.05" required>
</label>
<label for="heating-max-modulation">
<span data-i18n>settings.heating.maxMod</span>
<input type="number" inputmode="numeric" id="heating-max-modulation" name="heating[maxModulation]" min="1" max="100" step="1" required>
<label for="heating-turbo-factor">
<span data-i18n>settings.heating.turboFactor</span>
<input type="number" inputmode="numeric" id="heating-turbo-factor" name="heating[turboFactor]" min="1.5" max="10" step="0.1" required>
</label>
</div>
@@ -200,11 +215,6 @@
<div id="emergency-settings-busy" aria-busy="true"></div>
<form action="/api/settings" id="emergency-settings" class="hidden">
<fieldset>
<label for="emergency-enable">
<input type="checkbox" id="emergency-enable" name="emergency[enable]" value="true">
<span data-i18n>settings.enable</span>
</label>
<small data-i18n>settings.emergency.desc</small>
</fieldset>
@@ -221,43 +231,6 @@
</label>
</div>
<fieldset>
<legend data-i18n>settings.section.emergency.events</legend>
<label for="emergency-on-network-fault">
<input type="checkbox" id="emergency-on-network-fault" name="emergency[onNetworkFault]" value="true">
<span data-i18n>settings.emergency.events.network</span>
</label>
<label for="emergency-on-mqtt-fault">
<input type="checkbox" id="emergency-on-mqtt-fault" name="emergency[onMqttFault]" value="true">
<span data-i18n>settings.emergency.events.mqtt</span>
</label>
<label for="emergency-on-indoor-sensor-disconnect">
<input type="checkbox" id="emergency-on-indoor-sensor-disconnect" name="emergency[onIndoorSensorDisconnect]" value="true">
<span data-i18n>settings.emergency.events.indoorSensorDisconnect</span>
</label>
<label for="emergency-on-outdoor-sensor-disconnect">
<input type="checkbox" id="emergency-on-outdoor-sensor-disconnect" name="emergency[onOutdoorSensorDisconnect]" value="true">
<span data-i18n>settings.emergency.events.outdoorSensorDisconnect</span>
</label>
</fieldset>
<fieldset>
<legend data-i18n>settings.section.emergency.regulators</legend>
<label for="emergency-use-equitherm">
<input type="checkbox" id="emergency-use-equitherm" name="emergency[useEquitherm]" value="true">
<span data-i18n>settings.emergency.regulators.equitherm</span>
</label>
<label for="emergency-use-pid">
<input type="checkbox" id="emergency-use-pid" name="emergency[usePid]" value="true">
<span data-i18n>settings.emergency.regulators.pid</span>
</label>
</fieldset>
<button type="submit" data-i18n>button.save</button>
</form>
</div>
@@ -317,7 +290,7 @@
<div class="grid">
<label for="pid-p-factor">
<span data-i18n>settings.pid.p</span>
<input type="number" inputmode="numeric" id="pid-p-factor" name="pid[p_factor]" min="0.1" max="1000" step="0.1" required>
<input type="number" inputmode="numeric" id="pid-p-factor" name="pid[p_factor]" min="0.1" max="1000" step="0.01" required>
</label>
<label for="pid-i-factor">
@@ -327,13 +300,13 @@
<label for="pid-d-factor">
<span data-i18n>settings.pid.d</span>
<input type="number" inputmode="numeric" id="pid-d-factor" name="pid[d_factor]" min="0" max="100000" step="1" required>
<input type="number" inputmode="numeric" id="pid-d-factor" name="pid[d_factor]" min="0" max="100000" step="0.1" required>
</label>
</div>
<label for="pid-dt">
<span data-i18n>settings.pid.dt</span>
<input type="number" inputmode="numeric" id="pid-dt" name="pid[dt]" min="30" max="600" step="1" required>
<input type="number" inputmode="numeric" id="pid-dt" name="pid[dt]" min="30" max="1800" step="1" required>
</label>
<hr />
@@ -350,6 +323,8 @@
</label>
</div>
<small data-i18n>settings.pid.noteMinMaxTemp</small>
<button type="submit" data-i18n>button.save</button>
</form>
</div>
@@ -386,23 +361,43 @@
<span data-i18n>settings.ot.outGpio</span>
<input type="number" inputmode="numeric" id="opentherm-out-gpio" name="opentherm[outGpio]" min="0" max="254" step="1">
</label>
</div>
<div class="grid">
<label for="opentherm-rx-led-gpio">
<span data-i18n>settings.ot.ledGpio</span>
<input type="number" inputmode="numeric" id="opentherm-rx-led-gpio" name="opentherm[rxLedGpio]" min="0" max="254" step="1">
<small data-i18n>settings.note.blankNotUse</small>
</label>
</div>
<div class="grid">
<label for="opentherm-member-id-code">
<span data-i18n>settings.ot.memberIdCode</span>
<input type="number" inputmode="numeric" id="opentherm-member-id-code" name="opentherm[memberIdCode]" min="0" max="65535" step="1" required>
</label>
<label for="opentherm-max-modulation">
<span data-i18n>settings.ot.maxMod</span>
<input type="number" inputmode="numeric" id="opentherm-max-modulation" name="opentherm[maxModulation]" min="1" max="100" step="1" required>
</label>
</div>
<div class="grid">
<label for="opentherm-min-power">
<span data-i18n>settings.ot.minPower.title</span>
<input type="number" inputmode="numeric" id="opentherm-min-power" name="opentherm[minPower]" min="0" max="1000" step="0.1">
<small data-i18n>settings.ot.minPower.note</small>
</label>
<label for="opentherm-max-power">
<span data-i18n>settings.ot.maxPower.title</span>
<input type="number" inputmode="numeric" id="opentherm-max-power" name="opentherm[maxPower]" min="0" max="1000" step="0.1">
<small data-i18n>settings.ot.maxPower.note</small>
</label>
</div>
<fieldset>
<legend data-i18n>settings.section.ot.options</legend>
<legend data-i18n>settings.ot.options.desc</legend>
<label for="opentherm-dhw-present">
<input type="checkbox" id="opentherm-dhw-present" name="opentherm[dhwPresent]" value="true">
<span data-i18n>settings.ot.options.dhwPresent</span>
@@ -443,19 +438,10 @@
<span data-i18n>settings.ot.options.getMinMaxTemp</span>
</label>
<hr />
<fieldset>
<label for="opentherm-fault-state-gpio">
<span data-i18n>settings.ot.faultState.gpio</span>
<input type="number" inputmode="numeric" id="opentherm-fault-state-gpio" name="opentherm[faultStateGpio]" min="0" max="254" step="1">
<small data-i18n>settings.ot.faultState.note</small>
</label>
<label for="opentherm-invert-fault-state">
<input type="checkbox" id="opentherm-invert-fault-state" name="opentherm[invertFaultState]" value="true">
<span data-i18n>settings.ot.faultState.invert</span>
</label>
</fieldset>
<label for="opentherm-immergas-fix">
<input type="checkbox" id="opentherm-immergas-fix" name="opentherm[immergasFix]" value="true">
<span data-i18n>settings.ot.options.immergasFix</span>
</label>
<hr />
<label for="opentherm-native-heating-control">
@@ -464,6 +450,44 @@
<small data-i18n>settings.ot.nativeHeating.note</small>
</label>
</fieldset>
<hr />
<details>
<summary role="button" class="secondary" data-i18n>settings.ot.advanced</summary>
<div>
<div class="grid">
<label for="opentherm-pressure-factor">
<span data-i18n>settings.ot.pressureFactor.title</span>
<input type="number" inputmode="numeric" id="opentherm-pressure-factor" name="opentherm[pressureFactor]" min="0.1" max="100" step="0.01">
<small data-i18n>settings.ot.pressureFactor.note</small>
</label>
<label for="opentherm-dhw-fr-factor">
<span data-i18n>settings.ot.dhwFlowRateFactor.title</span>
<input type="number" inputmode="numeric" id="opentherm-dhw-fr-factor" name="opentherm[dhwFlowRateFactor]" min="0.1" max="100" step="0.01">
<small data-i18n>settings.ot.dhwFlowRateFactor.note</small>
</label>
</div>
<hr />
<fieldset>
<legend data-i18n>settings.ot.fnv.desc</legend>
<label for="opentherm-fnv-enable">
<input type="checkbox" id="opentherm-fnv-enable" name="opentherm[filterNumValues][enable]" value="true">
<span data-i18n>settings.ot.fnv.enable.title</span>
<br>
<small data-i18n>settings.ot.fnv.enable.note</small>
</label>
<label for="opentherm-fnv-factor">
<span data-i18n>settings.ot.fnv.factor.title</span>
<input type="number" inputmode="numeric" id="opentherm-fnv-factor" name="opentherm[filterNumValues][factor]" min="0.01" max="1" step="0.01">
<small data-i18n>settings.ot.fnv.factor.note</small>
</label>
</fieldset>
</div>
</details>
<button type="submit" data-i18n>button.save</button>
</form>
@@ -542,7 +566,7 @@
<label>
<input type="radio" class="outdoor-sensor-type" name="sensors[outdoor][type]" value="0" />
<span data-i18n>settings.tempSensor.source.boiler</span>
<span data-i18n>settings.tempSensor.source.boilerOutdoor</span>
</label>
<label>
@@ -561,24 +585,27 @@
</label>
</fieldset>
<label for="outdoor-sensor-gpio">
<span data-i18n>settings.tempSensor.gpio</span>
<input type="number" inputmode="numeric" id="outdoor-sensor-gpio" name="sensors[outdoor][gpio]" min="0" max="254" step="1">
</label>
<div class="grid">
<label for="outdoor-sensor-offset">
<span data-i18n>settings.tempSensor.offset</span>
<input type="number" inputmode="numeric" id="outdoor-sensor-offset" name="sensors[outdoor][offset]" min="-10" max="10" step="0.01" required>
<label for="outdoor-sensor-gpio">
<span data-i18n>settings.tempSensor.gpio</span>
<input type="number" inputmode="numeric" id="outdoor-sensor-gpio" name="sensors[outdoor][gpio]" min="0" max="254" step="1">
</label>
<label for="outdoor-sensor-ble-addresss">
<span data-i18n>settings.tempSensor.bleAddress.title</span>
<span data-i18n>settings.tempSensor.bleAddress</span>
<input type="text" id="outdoor-sensor-ble-addresss" name="sensors[outdoor][bleAddress]" pattern="([A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2}">
<small data-i18n>settings.tempSensor.bleAddress.note</small>
</label>
</div>
<label for="outdoor-sensor-offset">
<span data-i18n>settings.tempSensor.offset</span>
<input type="number" inputmode="numeric" id="outdoor-sensor-offset" name="sensors[outdoor][offset]" min="-20" max="20" step="0.01" required>
</label>
<fieldset>
<mark data-i18n>settings.note.bleDevice</mark>
</fieldset>
<button type="submit" data-i18n>button.save</button>
</form>
</div>
@@ -594,6 +621,11 @@
<fieldset>
<legend data-i18n>settings.tempSensor.source.type</legend>
<label>
<input type="radio" class="indoor-sensor-type" name="sensors[indoor][type]" value="4" />
<span data-i18n>settings.tempSensor.source.boilerReturn</span>
</label>
<label>
<input type="radio" class="indoor-sensor-type" name="sensors[indoor][type]" value="1" />
<span data-i18n>settings.tempSensor.source.manual</span>
@@ -610,24 +642,27 @@
</label>
</fieldset>
<label for="indoor-sensor-gpio">
<span data-i18n>settings.tempSensor.gpio</span>
<input type="number" inputmode="numeric" id="indoor-sensor-gpio" name="sensors[indoor][gpio]" min="0" max="254" step="1">
</label>
<div class="grid">
<label for="indoor-sensor-offset">
<span data-i18n>settings.tempSensor.offset</span>
<input type="number" inputmode="numeric" id="indoor-sensor-offset" name="sensors[indoor][offset]" min="-10" max="10" step="0.01" required>
<label for="indoor-sensor-gpio">
<span data-i18n>settings.tempSensor.gpio</span>
<input type="number" inputmode="numeric" id="indoor-sensor-gpio" name="sensors[indoor][gpio]" min="0" max="254" step="1">
</label>
<label for="indoor-sensor-ble-addresss">
<span data-i18n>settings.tempSensor.bleAddress.title</span>
<span data-i18n>settings.tempSensor.bleAddress</span>
<input type="text" id="indoor-sensor-ble-addresss" name="sensors[indoor][bleAddress]" pattern="([A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2}">
<small data-i18n>settings.tempSensor.bleAddress.note</small>
</label>
</div>
<label for="indoor-sensor-offset">
<span data-i18n>settings.tempSensor.offset</span>
<input type="number" inputmode="numeric" id="indoor-sensor-offset" name="sensors[indoor][offset]" min="-20" max="20" step="0.01" required>
</label>
<fieldset>
<mark data-i18n>settings.note.bleDevice</mark>
</fieldset>
<button type="submit" data-i18n>button.save</button>
</form>
</div>
@@ -675,6 +710,91 @@
</form>
</div>
</details>
<hr />
<details>
<summary><b data-i18n>settings.section.cascadeControl</b></summary>
<div>
<div id="cc-settings-busy" aria-busy="true"></div>
<form action="/api/settings" id="cc-settings" class="hidden">
<fieldset>
<label for="cc-input-enable">
<input type="checkbox" id="cc-input-enable" name="cascadeControl[input][enable]" value="true">
<span data-i18n>settings.cascadeControl.input.enable</span>
<br>
<small data-i18n>settings.cascadeControl.input.desc</small>
</label>
<label for="cc-input-invert-state">
<input type="checkbox" id="cc-input-invert-state" name="cascadeControl[input][invertState]" value="true">
<span data-i18n>settings.cascadeControl.input.invertState</span>
</label>
</fieldset>
<div class="grid">
<label for="cc-input-gpio">
<span data-i18n>settings.cascadeControl.input.gpio</span>
<input type="number" inputmode="numeric" id="cc-input-gpio" name="cascadeControl[input][gpio]" min="0" max="254" step="1">
</label>
<label for="cc-input-tt">
<span data-i18n>settings.cascadeControl.input.thresholdTime</span>
<input type="number" inputmode="numeric" id="cc-input-tt" name="cascadeControl[input][thresholdTime]" min="5" max="600" step="1" required>
</label>
</div>
<hr />
<fieldset>
<label for="cc-output-enable">
<input type="checkbox" id="cc-output-enable" name="cascadeControl[output][enable]" value="true">
<span data-i18n>settings.cascadeControl.output.enable</span>
<br>
<small data-i18n>settings.cascadeControl.output.desc</small>
</label>
<label for="cc-output-invert-state">
<input type="checkbox" id="cc-output-invert-state" name="cascadeControl[output][invertState]" value="true">
<span data-i18n>settings.cascadeControl.output.invertState</span>
</label>
</fieldset>
<div class="grid">
<label for="cc-output-gpio">
<span data-i18n>settings.cascadeControl.output.gpio</span>
<input type="number" outputmode="numeric" id="cc-output-gpio" name="cascadeControl[output][gpio]" min="0" max="254" step="1">
</label>
<label for="cc-output-tt">
<span data-i18n>settings.cascadeControl.output.thresholdTime</span>
<input type="number" outputmode="numeric" id="cc-output-tt" name="cascadeControl[output][thresholdTime]" min="5" max="600" step="1" required>
</label>
</div>
<fieldset>
<legend data-i18n>settings.cascadeControl.output.events.desc</legend>
<label for="cc-on-fault">
<input type="checkbox" id="cc-on-fault" name="cascadeControl[output][onFault]" value="true">
<span data-i18n>settings.cascadeControl.output.events.onFault</span>
</label>
<label for="cc-on-loss-conn">
<input type="checkbox" id="cc-on-loss-conn" name="cascadeControl[output][onLossConnection]" value="true">
<span data-i18n>settings.cascadeControl.output.events.onLossConnection</span>
</label>
<label for="cc-on-enabled-heating">
<input type="checkbox" id="cc-on-enabled-heating" name="cascadeControl[output][onEnabledHeating]" value="true">
<span data-i18n>settings.cascadeControl.output.events.onEnabledHeating</span>
</label>
</fieldset>
<button type="submit" data-i18n>button.save</button>
</form>
</div>
</details>
</article>
</main>
@@ -698,9 +818,9 @@
const fillData = (data) => {
// System
setCheckboxValue('#system-debug', data.system.debug);
setSelectValue('#system-log-level', data.system.logLevel);
setCheckboxValue('#system-serial-enable', data.system.serial.enable);
setInputValue('#system-serial-baudrate', data.system.serial.baudrate);
setSelectValue('#system-serial-baudrate', data.system.serial.baudrate);
setCheckboxValue('#system-telnet-enable', data.system.telnet.enable);
setInputValue('#system-telnet-port', data.system.telnet.port);
setRadioValue('.system-unit-system', data.system.unitSystem);
@@ -718,9 +838,12 @@
setInputValue('#opentherm-in-gpio', data.opentherm.inGpio < 255 ? data.opentherm.inGpio : '');
setInputValue('#opentherm-out-gpio', data.opentherm.outGpio < 255 ? data.opentherm.outGpio : '');
setInputValue('#opentherm-rx-led-gpio', data.opentherm.rxLedGpio < 255 ? data.opentherm.rxLedGpio : '');
setInputValue('#opentherm-fault-state-gpio', data.opentherm.faultStateGpio < 255 ? data.opentherm.faultStateGpio : '');
setCheckboxValue('#opentherm-invert-fault-state', data.opentherm.invertFaultState);
setInputValue('#opentherm-member-id-code', data.opentherm.memberIdCode);
setInputValue('#opentherm-max-modulation', data.opentherm.maxModulation);
setInputValue('#opentherm-pressure-factor', data.opentherm.pressureFactor);
setInputValue('#opentherm-dhw-fr-factor', data.opentherm.dhwFlowRateFactor);
setInputValue('#opentherm-min-power', data.opentherm.minPower);
setInputValue('#opentherm-max-power', data.opentherm.maxPower);
setCheckboxValue('#opentherm-dhw-present', data.opentherm.dhwPresent);
setCheckboxValue('#opentherm-sw-mode', data.opentherm.summerWinterMode);
setCheckboxValue('#opentherm-heating-ch2-enabled', data.opentherm.heatingCh2Enabled);
@@ -730,6 +853,9 @@
setCheckboxValue('#opentherm-sync-modulation-with-heating', data.opentherm.modulationSyncWithHeating);
setCheckboxValue('#opentherm-get-min-max-temp', data.opentherm.getMinMaxTemp);
setCheckboxValue('#opentherm-native-heating-control', data.opentherm.nativeHeatingControl);
setCheckboxValue('#opentherm-immergas-fix', data.opentherm.immergasFix);
setCheckboxValue('#opentherm-fnv-enable', data.opentherm.filterNumValues.enable);
setInputValue('#opentherm-fnv-factor', data.opentherm.filterNumValues.factor);
setBusy('#opentherm-settings-busy', '#opentherm-settings', false);
// MQTT
@@ -765,6 +891,21 @@
setInputValue('#extpump-as-time', data.externalPump.antiStuckTime);
setBusy('#extpump-settings-busy', '#extpump-settings', false);
// Cascade control
setCheckboxValue('#cc-input-enable', data.cascadeControl.input.enable);
setInputValue('#cc-input-gpio', data.cascadeControl.input.gpio < 255 ? data.cascadeControl.input.gpio : '');
setCheckboxValue('#cc-input-invert-state', data.cascadeControl.input.invertState);
setInputValue('#cc-input-tt', data.cascadeControl.input.thresholdTime);
setCheckboxValue('#cc-output-enable', data.cascadeControl.output.enable);
setInputValue('#cc-output-gpio', data.cascadeControl.output.gpio < 255 ? data.cascadeControl.output.gpio : '');
setCheckboxValue('#cc-output-invert-state', data.cascadeControl.output.invertState);
setInputValue('#cc-output-tt', data.cascadeControl.output.thresholdTime);
setCheckboxValue('#cc-on-fault', data.cascadeControl.output.onFault);
setCheckboxValue('#cc-on-loss-conn', data.cascadeControl.output.onLossConnection);
setCheckboxValue('#cc-on-enabled-heating', data.cascadeControl.output.onEnabledHeating);
setBusy('#cc-settings-busy', '#cc-settings', false);
// Heating
setInputValue('#heating-min-temp', data.heating.minTemp, {
"min": data.system.unitSystem == 0 ? 0 : 32,
@@ -775,7 +916,7 @@
"max": data.system.unitSystem == 0 ? 100 : 212
});
setInputValue('#heating-hysteresis', data.heating.hysteresis);
setInputValue('#heating-max-modulation', data.heating.maxModulation);
setInputValue('#heating-turbo-factor', data.heating.turboFactor);
setBusy('#heating-settings-busy', '#heating-settings', false);
// DHW
@@ -790,18 +931,20 @@
setBusy('#dhw-settings-busy', '#dhw-settings', false);
// Emergency mode
setCheckboxValue('#emergency-enable', data.emergency.enable);
setInputValue('#emergency-treshold-time', data.emergency.tresholdTime);
setCheckboxValue('#emergency-use-equitherm', data.emergency.useEquitherm);
setCheckboxValue('#emergency-use-pid', data.emergency.usePid);
setCheckboxValue('#emergency-on-network-fault', data.emergency.onNetworkFault);
setCheckboxValue('#emergency-on-mqtt-fault', data.emergency.onMqttFault);
setCheckboxValue('#emergency-on-indoor-sensor-disconnect', data.emergency.onIndoorSensorDisconnect);
setCheckboxValue('#emergency-on-outdoor-sensor-disconnect', data.emergency.onOutdoorSensorDisconnect);
setInputValue('#emergency-target', data.emergency.target, {
"min": (!data.emergency.useEquitherm && !data.emergency.usePid) ? data.heating.minTemp : 10,
"max": (!data.emergency.useEquitherm && !data.emergency.usePid) ? data.heating.maxTemp : 30,
});
if (data.opentherm.nativeHeatingControl) {
setInputValue('#emergency-target', data.emergency.target, {
"min": data.system.unitSystem == 0 ? 5 : 41,
"max": data.system.unitSystem == 0 ? 30 : 86
});
} else {
setInputValue('#emergency-target', data.emergency.target, {
"min": data.heating.minTemp,
"max": data.heating.maxTemp,
});
}
setBusy('#emergency-settings-busy', '#emergency-settings', false);
// Equitherm
@@ -818,12 +961,12 @@
setInputValue('#pid-d-factor', data.pid.d_factor);
setInputValue('#pid-dt', data.pid.dt);
setInputValue('#pid-min-temp', data.pid.minTemp, {
"min": 0,
"max": data.system.unitSystem == 0 ? 99 : 211
"min": data.equitherm.enable ? (data.system.unitSystem == 0 ? -100 : -146) : (data.system.unitSystem == 0 ? 0 : 32),
"max": (data.system.unitSystem == 0 ? 99 : 211)
});
setInputValue('#pid-max-temp', data.pid.maxTemp, {
"min": 1,
"max": data.system.unitSystem == 0 ? 100 : 212
"min": (data.system.unitSystem == 0 ? 0 : 33),
"max": (data.system.unitSystem == 0 ? 100 : 212)
});
setBusy('#pid-settings-busy', '#pid-settings', false);
};
@@ -849,6 +992,7 @@
setupForm('#outdoor-sensor-settings', fillData);
setupForm('#indoor-sensor-settings', fillData, ['sensors.indoor.bleAddress']);
setupForm('#extpump-settings', fillData);
setupForm('#cc-settings', fillData);
} catch (error) {
console.log(error);

View File

@@ -539,6 +539,17 @@ function setInputValue(selector, value, attrs = {}) {
}
}
function setSelectValue(selector, value) {
let item = document.querySelector(selector);
if (!item) {
return;
}
for (let option of item.options) {
option.selected = option.value == value;
}
}
function show(selector) {
let items = document.querySelectorAll(selector);
if (!items.length) {
@@ -596,9 +607,9 @@ function memberIdToVendor(memberId) {
// https://github.com/Jeroen88/EasyOpenTherm/blob/main/src/EasyOpenTherm.h
// https://github.com/Evgen2/SmartTherm/blob/v0.7/src/Web.cpp
const vendorList = {
1: "Baxi Fourtech/Luna 3",
2: "AWB/Brink",
4: "ATAG/Brötje/ELCO/GEMINOX",
1: "Baxi",
2: "AWB/Brink/Viessmann",
4: "ATAG/Baxi/Brötje/ELCO/GEMINOX",
5: "Itho Daalderop",
6: "IDEAL",
8: "Buderus/Bosch/Hoval",
@@ -609,8 +620,8 @@ function memberIdToVendor(memberId) {
27: "Baxi",
29: "Itho Daalderop",
33: "Viessmann",
41: "Italtherm",
56: "Baxi Luna Duo-Tec",
41: "Italtherm/Radiant",
56: "Baxi",
131: "Nefit",
148: "Navien",
173: "Intergas",
@@ -665,4 +676,13 @@ function form2json(data, noCastItems = []) {
let object = Array.from(data).reduce(method, {});
return JSON.stringify(object);
}
function dec2hex(i) {
let hex = parseInt(i).toString(16);
if (hex.length % 2 != 0) {
hex = "0" + hex;
}
return hex.toUpperCase();
}

View File

@@ -6,10 +6,11 @@ Import("env")
def post_build(source, target, env):
copy_to_build_dir({
source[0].get_abspath(): "firmware_%s_%s.bin" % (env["PIOENV"], env.GetProjectOption("version")),
env.subst("$BUILD_DIR/${PROGNAME}.factory.bin"): "firmware_%s_%s.factory.bin" % (env["PIOENV"], env.GetProjectOption("version")),
source[0].get_abspath(): "firmware_%s_%s.bin" % (env["PIOENV"], env.GetProjectOption("version")),
env.subst("$BUILD_DIR/${PROGNAME}.factory.bin"): "firmware_%s_%s.factory.bin" % (env["PIOENV"], env.GetProjectOption("version")),
env.subst("$BUILD_DIR/${PROGNAME}.elf"): "firmware_%s_%s.elf" % (env["PIOENV"], env.GetProjectOption("version"))
}, os.path.join(env["PROJECT_DIR"], "build"));
env.Execute("pio run --target buildfs --environment %s" % env["PIOENV"]);