Two voltage readers and ohmic sensing unitas

This commit is contained in:
MetalMusings
2025-06-07 14:43:35 +02:00
parent 3c61897b8e
commit d7a2110a67

View File

@@ -43,9 +43,20 @@ void ads1014_reset(ADS1014 *ads)
ads->readADC_Differential_0_1(); // This is the value we are interested in
}
void handleVoltageReader(float scale_in, float offset, float outVoltage, int32_t outRaw,
void handleVoltageReader(float scale_in, float offset, float &outVoltage, int32_t &outRaw,
float &oldVoltage, float &oldRaw,
uint8_t devType, int8_t &old_devType, uint8_t &readStat, uint32_t &outStatus, ADS1014 *ads, MyMCP3221 *mcp, uint8_t I2C_address, uint32_t &I2C_restarts);
uint8_t devType, int8_t &old_devType, uint8_t &readStat, uint32_t &outStatus,
ADS1014 *&ads, MyMCP3221 *mcp, uint8_t I2C_address, uint32_t &I2C_restarts);
void lowpassFilter(float &oldLowPassGain,
uint32_t &oldLowpassFilterPoleFrequency,
float &oldLowPassFilteredVoltage,
uint32_t LowpassFilterPoleFrequency,
float LowPassFilterThresholdVoltage,
float inVoltage,
float &outFilteredVoltage);
void handleOhmicSensing(uint8_t &ohmicState, uint8_t voltageState,
float inVoltage, float limitVoltage,
uint8_t enabled, uint8_t &sensed);
#define bitset(byte, nbit) ((byte) |= (1 << (nbit)))
#define bitclear(byte, nbit) ((byte) &= ~(1 << (nbit)))
#define bitflip(byte, nbit) ((byte) ^= (1 << (nbit)))
@@ -61,9 +72,9 @@ void cb_set_outputs(void) // Get Master outputs, slave inputs, first operation
digitalWrite(outputPin[i], bitcheck(Obj.Output4, i) ? HIGH : LOW);
}
float oldLowPassGain = 0;
float oldLowPassFilteredVoltage = 0;
uint32_t oldLowpassFilterPoleFrequency = 0;
float oldLowPassGain_1 = 0, oldLowPassGain_2 = 0;
float oldLowPassFilteredVoltage_1 = 0, oldLowPassFilteredVoltage_2 = 0;
uint32_t oldLowpassFilterPoleFrequency_1 = 0, oldLowpassFilterPoleFrequency_2 = 0;
uint32_t timeSinceOhmicSensingEnabled = 0;
@@ -84,244 +95,36 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
validVoltage0_2, validData0_2,
Obj.Settings_Unit2.I2C_devicetype, old_I2Cdevice_2, stat_2, Obj.Out_Unit2.Status,
ads1014_2, mcp3221_2, Obj.Settings_Unit2.I2C_address, I2C_restarts_2);
#if 0
float scale_1 = Obj.In_Unit1.VoltageScale;
if (scale_1 == 0.0)
scale_1 = 1.0;
int stat_1 = 1, data0_1;
switch (Obj.Settings_Unit1.I2C_devicetype)
{
case 0: // Not configured.
Obj.Out_Unit1.Status = 0;
stat_1 = data0_1 = 0;
break;
case MCP3221_TYPE:
if (old_I2Cdevice_1 != Obj.Settings_Unit1.I2C_devicetype) // Initilize and make ready
{
if (ads1014_1)
{
delete ads1014_1;
ads1014_1 = 0;
}
if (mcp3221_1)
{
delete mcp3221_1;
mcp3221_1 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
mcp3221_1 = new MyMCP3221(Obj.Settings_Unit1.I2C_address, &Wire2);
old_I2Cdevice_1 = mcp3221_1 ? MCP3221_TYPE : -1;
}
data0_1 = mcp3221_1->getData();
stat_1 = mcp3221_1->ping();
break;
case ADS1014_TYPE:
if (old_I2Cdevice_1 != Obj.Settings_Unit1.I2C_devicetype) // Initilize and make ready
{
if (ads1014_1)
{
delete ads1014_1;
ads1014_1 = 0;
}
if (mcp3221_1)
{
delete mcp3221_1;
mcp3221_1 = 0;
}
lowpassFilter(oldLowPassGain_1,
oldLowpassFilterPoleFrequency_1,
oldLowPassFilteredVoltage_1,
Obj.Settings_Unit1.LowpassFilterPoleFrequency,
Obj.In_Unit1.LowPassFilterThresholdVoltage,
Obj.Out_Unit1.CalculatedVoltage,
Obj.Out_Unit1.LowpassFilteredVoltage);
lowpassFilter(oldLowPassGain_2,
oldLowpassFilterPoleFrequency_2,
oldLowPassFilteredVoltage_2,
Obj.Settings_Unit2.LowpassFilterPoleFrequency,
Obj.In_Unit2.LowPassFilterThresholdVoltage,
Obj.Out_Unit2.CalculatedVoltage,
Obj.Out_Unit2.LowpassFilteredVoltage);
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
ads1014_1 = new ADS1014(Obj.Settings_Unit1.I2C_address, &Wire2);
ads1014_reset(ads1014_1);
old_I2Cdevice_1 = ADS1014_TYPE;
}
data0_1 = ads1014_1->getValue();
stat_1 = ads1014_1->isConnected() == 1 ? 0 : 1;
break;
default: // Not supported
break;
}
if (stat_1 == 0)
{ // Read good value
Obj.Out_Unit1.CalculatedVoltage = scale_1 * data0_1 + Obj.In_Unit1.VoltageOffset; //
Obj.Out_Unit1.RawData = data0_1; // Raw voltage, read by ADC
validVoltage0_1 = Obj.Out_Unit1.CalculatedVoltage;
validData0_1 = data0_1;
}
else
{ // Didn't read a good value. Return a hopefully useful value and restart the I2C bus
Obj.Out_Unit1.CalculatedVoltage = validVoltage0_1; // Use value from previous call
Obj.Out_Unit1.RawData = validData0_1;
// Reset wire here
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
I2C_restarts_1++;
if (Obj.Settings_Unit1.I2C_devicetype == ADS1014_TYPE)
ads1014_reset(ads1014_1);
// mcp3221 has no reset, reset the I2C bus is the best we can do
}
Obj.Out_Unit1.Status = I2C_restarts_1 + (stat_1 << 28); // Put status as bits 28-31, the lower are number of restarts (restart attempts)
#endif
#if 0
float scale_2 = Obj.In_Unit2.VoltageScale;
if (scale_2 == 0.0)
scale_2 = 1.0;
int stat_2 = 1, data0_2;
switch (Obj.Settings_Unit2.I2C_devicetype)
{
case 0: // Not configured.
Obj.Out_Unit2.Status = 0;
stat_2 = data0_2 = 0;
break;
case MCP3221_TYPE:
if (old_I2Cdevice_2 != Obj.Settings_Unit2.I2C_devicetype) // Initilize and make ready
{
if (ads1014_2)
{
delete ads1014_2;
ads1014_2 = 0;
}
if (mcp3221_2)
{
delete mcp3221_2;
mcp3221_2 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
mcp3221_2 = new MyMCP3221(Obj.Settings_Unit2.I2C_address, &Wire2);
old_I2Cdevice_2 = mcp3221_2 ? MCP3221_TYPE : -1;
}
data0_2 = mcp3221_2->getData();
stat_2 = mcp3221_2->ping();
break;
case ADS1014_TYPE:
if (old_I2Cdevice_2 != Obj.Settings_Unit2.I2C_devicetype) // Initilize and make ready
{
if (ads1014_2)
{
delete ads1014_2;
ads1014_2 = 0;
}
if (mcp3221_2)
{
delete mcp3221_2;
mcp3221_2 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
ads1014_2 = new ADS1014(Obj.Settings_Unit2.I2C_address, &Wire2);
ads1014_reset(ads1014_2);
old_I2Cdevice_2 = ADS1014_TYPE;
}
data0_2 = ads1014_2->getValue();
stat_2 = ads1014_2->isConnected() == 1 ? 0 : 1;
break;
default: // Not supported
break;
}
if (stat_2 == 0)
{ // Read good value
Obj.Out_Unit2.CalculatedVoltage = scale_2 * data0_2 + Obj.In_Unit2.VoltageOffset; //
Obj.Out_Unit2.RawData = data0_2; // Raw voltage, read by ADC
validVoltage0_2 = Obj.Out_Unit2.CalculatedVoltage;
validData0_2 = data0_2;
}
else
{ // Didn't read a good value. Return a hopefully useful value and restart the I2C bus
Obj.Out_Unit2.CalculatedVoltage = validVoltage0_2; // Use value from previous call
Obj.Out_Unit2.RawData = validData0_2;
// Reset wire here
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
I2C_restarts_2++;
if (Obj.Settings_Unit2.I2C_devicetype == ADS1014_TYPE)
ads1014_reset(ads1014_2);
// mcp3221 has no reset, reset the I2C bus is the best we can do
}
Obj.Out_Unit2.Status = I2C_restarts_2 + (stat_2 << 28); // Put status as bits 28-31, the lower are number of restarts (restart attempts)
#endif
// Low pass filter. See lowpass in linuxcnc doc
float gain = oldLowPassGain;
if (oldLowpassFilterPoleFrequency != Obj.Settings_Unit1.LowpassFilterPoleFrequency)
{
gain = 1 - expf(-2.0 * M_PI * Obj.Settings_Unit1.LowpassFilterPoleFrequency * 0.001 /*1.0e-9 * ESC_SYNC0cycletime()*/);
oldLowPassGain = gain;
oldLowpassFilterPoleFrequency = Obj.Settings_Unit1.LowpassFilterPoleFrequency;
}
if (Obj.Out_Unit1.CalculatedVoltage < Obj.In_Unit1.LowPassFilterThresholdVoltage)
Obj.Out_Unit1.LowpassFilteredVoltage = Obj.Out_Unit1.CalculatedVoltage; // Just forward
else
Obj.Out_Unit1.LowpassFilteredVoltage = oldLowPassFilteredVoltage + (Obj.Out_Unit1.CalculatedVoltage - oldLowPassFilteredVoltage) * gain;
oldLowPassFilteredVoltage = Obj.Out_Unit1.LowpassFilteredVoltage;
#if 0
Obj.OhmicSensingSensed = 0;
if (Obj.EnableOhmicSensing && stat == 0)
{
timeSinceOhmicSensingEnabled++; // Lazy and just use iterations now.
if (timeSinceOhmicSensingEnabled >= Obj.OhmicSensingSetupTime) // Let's check
{ //
if (Obj.CalculatedVoltage < Obj.OhmicSensingVoltageLimit) // Limit hit, set output
{
Obj.OhmicSensingSensed = 1;
}
}
}
else
{
timeSinceOhmicSensingEnabled = 0;
}
#else
#define OHMIC_IDLE 0
#define OHMIC_PROBE 1
static uint8_t ohmicState_1 = OHMIC_IDLE;
static uint8_t ohmicState_2 = OHMIC_IDLE;
Obj.Out_Unit1.OhmicSensingSensed = 0;
if (Obj.In_Unit1.EnableOhmicSensing && stat_1 == 0)
{
if (ohmicState_1 == OHMIC_IDLE && Obj.Out_Unit1.CalculatedVoltage > Obj.In_Unit1.OhmicSensingVoltageLimit)
{
ohmicState_1 = OHMIC_PROBE;
}
if (ohmicState_1 == OHMIC_PROBE && Obj.Out_Unit1.CalculatedVoltage <= Obj.In_Unit1.OhmicSensingVoltageLimit)
{
Obj.Out_Unit1.OhmicSensingSensed = 1;
}
}
else
{
ohmicState_1 = OHMIC_IDLE;
}
Obj.Out_Unit2.OhmicSensingSensed = 0;
if (Obj.In_Unit2.EnableOhmicSensing && stat_2 == 0)
{
if (ohmicState_2 == OHMIC_IDLE && Obj.Out_Unit2.CalculatedVoltage > Obj.In_Unit2.OhmicSensingVoltageLimit)
{
ohmicState_2 = OHMIC_PROBE;
}
if (ohmicState_2 == OHMIC_PROBE && Obj.Out_Unit2.CalculatedVoltage <= Obj.In_Unit2.OhmicSensingVoltageLimit)
{
Obj.Out_Unit2.OhmicSensingSensed = 1;
}
}
else
{
ohmicState_2 = OHMIC_IDLE;
}
#endif
handleOhmicSensing(ohmicState_1, stat_1,
Obj.Out_Unit1.CalculatedVoltage,
Obj.In_Unit1.OhmicSensingVoltageLimit,
Obj.In_Unit1.EnableOhmicSensing,
Obj.Out_Unit1.OhmicSensingSensed);
handleOhmicSensing(ohmicState_2, stat_2,
Obj.Out_Unit2.CalculatedVoltage,
Obj.In_Unit2.OhmicSensingVoltageLimit,
Obj.In_Unit2.EnableOhmicSensing,
Obj.Out_Unit2.OhmicSensingSensed);
}
void ESC_interrupt_enable(uint32_t mask);
@@ -391,7 +194,7 @@ void setup(void)
mcp3221 = new MyMCP3221(0x48, &Wire2);
#endif
#ifdef ADS1xxx
ads1014_1 = new ADS1014(0x49, &Wire2);
ads1014_1 = new ADS1014(0x48, &Wire2);
ads1014_reset(ads1014_1);
#endif
while (1) // Search I2C bus for devices
@@ -509,17 +312,16 @@ uint16_t dc_checker(void)
return 0;
}
#if 1
void handleVoltageReader(float scale_in, float offset, float outVoltage, int32_t outRaw,
void handleVoltageReader(float scale_in, float offset, float &outVoltage, int32_t &outRaw,
float &oldVoltage, float &oldRaw,
uint8_t devType, int8_t &old_devType, uint8_t &readStat, uint32_t &outStatus,
ADS1014 *ads, MyMCP3221 *mcp, uint8_t I2C_address, uint32_t &I2C_restarts)
ADS1014 *&ads, MyMCP3221 *mcp, uint8_t I2C_address, uint32_t &I2C_restarts)
{
float scale = scale_in;
if (scale == 0.0)
scale = 1.0;
int stat = 1, data0;
switch (devType)
{
case 0: // Not configured.
@@ -561,16 +363,23 @@ void handleVoltageReader(float scale_in, float offset, float outVoltage, int32_t
delete mcp;
mcp = 0;
}
old_devType = 0;
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
ads = new ADS1014(I2C_address, &Wire2);
ads1014_reset(ads);
old_devType = ads ? ADS1014_TYPE : -1;
if (ads != nullptr)
{
ads1014_reset(ads);
old_devType = ADS1014_TYPE;
}
}
if (ads != nullptr)
{
data0 = ads->getValue();
stat = ads->isConnected() == 1 ? 0 : 1;
}
data0 = ads->getValue();
stat = ads->isConnected() == 1 ? 0 : 1;
break;
default: // Not supported
break;
@@ -592,11 +401,65 @@ void handleVoltageReader(float scale_in, float offset, float outVoltage, int32_t
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
I2C_restarts++;
if (devType == ADS1014_TYPE)
if (devType == ADS1014_TYPE && ads != nullptr)
ads1014_reset(ads);
// mcp3221 has no reset, reset the I2C bus is the best we can do
}
readStat = stat;
outStatus = I2C_restarts + (stat << 28); // Put status as bits 28-31, the lower are number of restarts (restart attempts)
}
#endif
#if 0
lowpassFilter(oldLowPassGain,
oldLowpassFilterPoleFrequency,
oldLowPassFilteredVoltage,
Obj.Settings_Unit1.LowpassFilterPoleFrequency,
Obj.In_Unit1.LowPassFilterThresholdVoltage,
Obj.Out_Unit1.CalculatedVoltage,
Obj.Out_Unit1.LowpassFilteredVoltage)
#endif
void lowpassFilter(float &oldLowPassGain,
uint32_t &oldLowpassFilterPoleFrequency,
float &oldLowPassFilteredVoltage,
uint32_t LowpassFilterPoleFrequency,
float LowPassFilterThresholdVoltage,
float inVoltage,
float &outFilteredVoltage)
{
// Low pass filter. See lowpass in linuxcnc doc
float gain = oldLowPassGain;
if (oldLowpassFilterPoleFrequency != LowpassFilterPoleFrequency)
{
gain = 1 - expf(-2.0 * M_PI * LowpassFilterPoleFrequency * 0.001 /*1.0e-9 * ESC_SYNC0cycletime()*/);
oldLowPassGain = gain;
oldLowpassFilterPoleFrequency = LowpassFilterPoleFrequency;
}
if (inVoltage < LowPassFilterThresholdVoltage)
outFilteredVoltage = inVoltage; // Just forward
else
outFilteredVoltage = oldLowPassFilteredVoltage + (inVoltage - oldLowPassFilteredVoltage) * gain;
oldLowPassFilteredVoltage = outFilteredVoltage;
}
void handleOhmicSensing(uint8_t &ohmicState, uint8_t voltageState,
float inVoltage, float limitVoltage,
uint8_t enabled, uint8_t &sensed)
{
sensed = 0;
if (enabled && voltageState == 0)
{
if (ohmicState == OHMIC_IDLE && inVoltage > limitVoltage)
{
ohmicState = OHMIC_PROBE;
}
if (ohmicState == OHMIC_PROBE && inVoltage <= limitVoltage)
{
sensed = 1;
}
}
else
{
ohmicState = OHMIC_IDLE;
}
}