Reshuffle and add second reader.

This commit is contained in:
Hakan Bastedt
2025-06-07 09:53:48 +02:00
parent 81b930b290
commit 3c61897b8e
6 changed files with 1679 additions and 873 deletions

View File

@@ -33,8 +33,8 @@
#define SM3_smc 0x20
#define SM3_act 1
#define MAX_MAPPINGS_SM2 7
#define MAX_MAPPINGS_SM3 6
#define MAX_MAPPINGS_SM2 13
#define MAX_MAPPINGS_SM3 11
#define MAX_RXPDO_SIZE 512
#define MAX_TXPDO_SIZE 512

View File

@@ -35,31 +35,68 @@
"od": {
"sdo": {
"2000": {
"otype": "VAR",
"name": "I2C_devicetype",
"access": "RW",
"dtype": "UNSIGNED8",
"value": "0",
"isSDOitem": true,
"data": "&Obj.I2C_devicetype"
"otype": "RECORD",
"name": "Settings_Unit1",
"access": "RO",
"items": [
{
"name": "Max SubIndex"
},
{
"name": "I2C_devicetype",
"dtype": "UNSIGNED8",
"data": "&Obj.Settings_Unit1.I2C_devicetype",
"value": "0",
"access": "RW"
},
{
"name": "I2C_address",
"dtype": "UNSIGNED8",
"value": "0",
"access": "RW",
"data": "&Obj.Settings_Unit1.I2C_address"
},
{
"name": "LowpassFilterPoleFrequency",
"dtype": "UNSIGNED32",
"value": "0",
"access": "RW",
"data": "&Obj.Settings_Unit1.LowpassFilterPoleFrequency"
}
],
"isSDOitem": true
},
"2001": {
"otype": "VAR",
"name": "I2C_address",
"access": "RW",
"dtype": "UNSIGNED8",
"value": "0",
"isSDOitem": true,
"data": "&Obj.I2C_address"
},
"2002": {
"otype": "VAR",
"name": "LowpassFilterPoleFrequency",
"access": "RW",
"dtype": "UNSIGNED32",
"value": "0",
"isSDOitem": true,
"data": "&Obj.LowpassFilterPoleFrequency"
"otype": "RECORD",
"name": "Settings_Unit2",
"access": "RO",
"items": [
{
"name": "Max SubIndex"
},
{
"name": "I2C_devicetype",
"dtype": "UNSIGNED8",
"data": "&Obj.Settings_Unit2.I2C_devicetype",
"value": "0",
"access": "RW"
},
{
"name": "I2C_address",
"dtype": "UNSIGNED8",
"value": "0",
"access": "RW",
"data": "&Obj.Settings_Unit2.I2C_address"
},
{
"name": "LowpassFilterPoleFrequency",
"dtype": "UNSIGNED32",
"value": "0",
"access": "RW",
"data": "&Obj.Settings_Unit2.LowpassFilterPoleFrequency"
}
],
"isSDOitem": true
},
"A": {
"otype": "RECORD",
@@ -100,59 +137,100 @@
"data": "&Obj.Input12"
},
"6001": {
"otype": "VAR",
"name": "RawData",
"otype": "RECORD",
"name": "Out_Unit1",
"access": "RO",
"items": [
{
"name": "Max SubIndex"
},
{
"name": "RawData",
"dtype": "INTEGER32",
"data": "&Obj.Out_Unit1.RawData",
"value": "0",
"access": "RO"
},
{
"name": "CalculatedVoltage",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.Out_Unit1.CalculatedVoltage"
},
{
"name": "Status",
"dtype": "UNSIGNED32",
"value": "0",
"access": "RO",
"data": "&Obj.Out_Unit1.Status"
},
{
"name": "LowpassFilteredVoltage",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.Out_Unit1.LowpassFilteredVoltage"
},
{
"name": "OhmicSensingSensed",
"dtype": "UNSIGNED8",
"value": "0",
"access": "RO",
"data": "&Obj.Out_Unit1.OhmicSensingSensed"
}
],
"pdo_mappings": [
"txpdo"
],
"dtype": "INTEGER32",
"value": "0",
"data": "&Obj.RawData"
]
},
"6002": {
"otype": "VAR",
"name": "CalculatedVoltage",
"otype": "RECORD",
"name": "Out_Unit2",
"access": "RO",
"items": [
{
"name": "Max SubIndex"
},
{
"name": "RawData",
"dtype": "INTEGER32",
"data": "&Obj.Out_Unit2.RawData",
"value": "0",
"access": "RO"
},
{
"name": "CalculatedVoltage",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.Out_Unit2.CalculatedVoltage"
},
{
"name": "Status",
"dtype": "UNSIGNED32",
"value": "0",
"access": "RO",
"data": "&Obj.Out_Unit2.Status"
},
{
"name": "LowpassFilteredVoltage",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.Out_Unit2.LowpassFilteredVoltage"
},
{
"name": "OhmicSensingSensed",
"dtype": "UNSIGNED8",
"value": "0",
"access": "RO",
"data": "&Obj.Out_Unit2.OhmicSensingSensed"
}
],
"pdo_mappings": [
"txpdo"
],
"dtype": "REAL32",
"value": "0",
"data": "&Obj.CalculatedVoltage"
},
"6003": {
"otype": "VAR",
"name": "Status",
"access": "RO",
"pdo_mappings": [
"txpdo"
],
"dtype": "UNSIGNED8",
"value": "0",
"data": "&Obj.Status"
},
"6004": {
"otype": "VAR",
"name": "LowpassFilteredVoltage",
"access": "RO",
"pdo_mappings": [
"txpdo"
],
"dtype": "REAL32",
"value": "0",
"data": "&Obj.LowpassFilteredVoltage"
},
"6005": {
"otype": "VAR",
"name": "OhmicSensingSensed",
"access": "RO",
"pdo_mappings": [
"txpdo"
],
"dtype": "UNSIGNED8",
"value": "0",
"data": "&Obj.OhmicSensingSensed"
]
}
},
"rxpdo": {
@@ -168,70 +246,114 @@
"data": "&Obj.Output4"
},
"7001": {
"otype": "VAR",
"name": "VoltageScale",
"otype": "RECORD",
"name": "In_Unit1",
"access": "RO",
"items": [
{
"name": "Max SubIndex"
},
{
"name": "VoltageScale",
"dtype": "REAL32",
"data": "&Obj.In_Unit1.VoltageScale",
"value": "0",
"access": "RO"
},
{
"name": "VoltageOffset",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit1.VoltageOffset"
},
{
"name": "LowPassFilterThresholdVoltage",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit1.LowPassFilterThresholdVoltage"
},
{
"name": "EnableOhmicSensing",
"dtype": "UNSIGNED8",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit1.EnableOhmicSensing"
},
{
"name": "OhmicSensingSetupTime",
"dtype": "UNSIGNED32",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit1.OhmicSensingSetupTime"
},
{
"name": "OhmicSensingVoltageLimit",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit1.OhmicSensingVoltageLimit"
}
],
"pdo_mappings": [
"rxpdo"
],
"dtype": "REAL32",
"value": "0",
"data": "&Obj.VoltageScale"
]
},
"7002": {
"otype": "VAR",
"name": "VoltageOffset",
"otype": "RECORD",
"name": "In_Unit2",
"access": "RO",
"items": [
{
"name": "Max SubIndex"
},
{
"name": "VoltageScale",
"dtype": "REAL32",
"data": "&Obj.In_Unit2.VoltageScale",
"value": "0",
"access": "RO"
},
{
"name": "VoltageOffset",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit2.VoltageOffset"
},
{
"name": "LowPassFilterThresholdVoltage",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit2.LowPassFilterThresholdVoltage"
},
{
"name": "EnableOhmicSensing",
"dtype": "UNSIGNED8",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit2.EnableOhmicSensing"
},
{
"name": "OhmicSensingSetupTime",
"dtype": "UNSIGNED32",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit2.OhmicSensingSetupTime"
},
{
"name": "OhmicSensingVoltageLimit",
"dtype": "REAL32",
"value": "0",
"access": "RO",
"data": "&Obj.In_Unit2.OhmicSensingVoltageLimit"
}
],
"pdo_mappings": [
"rxpdo"
],
"dtype": "REAL32",
"value": "0",
"data": "&Obj.VoltageOffset"
},
"7003": {
"otype": "VAR",
"name": "LowPassFilterThresholdVoltage",
"access": "RO",
"pdo_mappings": [
"rxpdo"
],
"dtype": "REAL32",
"value": "0",
"data": "&Obj.LowPassFilterThresholdVoltage"
},
"7004": {
"otype": "VAR",
"name": "EnableOhmicSensing",
"access": "RO",
"pdo_mappings": [
"rxpdo"
],
"dtype": "UNSIGNED8",
"value": "0",
"data": "&Obj.EnableOhmicSensing"
},
"7005": {
"otype": "VAR",
"name": "OhmicSensingSetupTime",
"access": "RO",
"pdo_mappings": [
"rxpdo"
],
"dtype": "UNSIGNED32",
"value": "0",
"data": "&Obj.OhmicSensingSetupTime"
},
"7006": {
"otype": "VAR",
"name": "OhmicSensingVoltageLimit",
"access": "RO",
"pdo_mappings": [
"rxpdo"
],
"dtype": "REAL32",
"value": "0",
"data": "&Obj.OhmicSensingVoltageLimit"
]
},
"60664": {
"otype": "VAR",

View File

@@ -16,42 +16,39 @@ static const char acName1018_04[] = "Serial Number";
static const char acName1600[] = "Output4";
static const char acName1600_00[] = "Max SubIndex";
static const char acName1600_01[] = "Output4";
static const char acName1601[] = "VoltageScale";
static const char acName1601[] = "In_Unit1";
static const char acName1601_00[] = "Max SubIndex";
static const char acName1601_01[] = "VoltageScale";
static const char acName1602[] = "VoltageOffset";
static const char acName1601_02[] = "VoltageOffset";
static const char acName1601_03[] = "LowPassFilterThresholdVoltage";
static const char acName1601_04[] = "EnableOhmicSensing";
static const char acName1601_05[] = "OhmicSensingSetupTime";
static const char acName1601_06[] = "OhmicSensingVoltageLimit";
static const char acName1602[] = "In_Unit2";
static const char acName1602_00[] = "Max SubIndex";
static const char acName1602_01[] = "VoltageOffset";
static const char acName1603[] = "LowPassFilterThresholdVoltage";
static const char acName1603_00[] = "Max SubIndex";
static const char acName1603_01[] = "LowPassFilterThresholdVoltage";
static const char acName1604[] = "EnableOhmicSensing";
static const char acName1604_00[] = "Max SubIndex";
static const char acName1604_01[] = "EnableOhmicSensing";
static const char acName1605[] = "OhmicSensingSetupTime";
static const char acName1605_00[] = "Max SubIndex";
static const char acName1605_01[] = "OhmicSensingSetupTime";
static const char acName1606[] = "OhmicSensingVoltageLimit";
static const char acName1606_00[] = "Max SubIndex";
static const char acName1606_01[] = "OhmicSensingVoltageLimit";
static const char acName1602_01[] = "VoltageScale";
static const char acName1602_02[] = "VoltageOffset";
static const char acName1602_03[] = "LowPassFilterThresholdVoltage";
static const char acName1602_04[] = "EnableOhmicSensing";
static const char acName1602_05[] = "OhmicSensingSetupTime";
static const char acName1602_06[] = "OhmicSensingVoltageLimit";
static const char acName1A00[] = "Input12";
static const char acName1A00_00[] = "Max SubIndex";
static const char acName1A00_01[] = "Input12";
static const char acName1A01[] = "RawData";
static const char acName1A01[] = "Out_Unit1";
static const char acName1A01_00[] = "Max SubIndex";
static const char acName1A01_01[] = "RawData";
static const char acName1A02[] = "CalculatedVoltage";
static const char acName1A01_02[] = "CalculatedVoltage";
static const char acName1A01_03[] = "Status";
static const char acName1A01_04[] = "LowpassFilteredVoltage";
static const char acName1A01_05[] = "OhmicSensingSensed";
static const char acName1A02[] = "Out_Unit2";
static const char acName1A02_00[] = "Max SubIndex";
static const char acName1A02_01[] = "CalculatedVoltage";
static const char acName1A03[] = "Status";
static const char acName1A03_00[] = "Max SubIndex";
static const char acName1A03_01[] = "Status";
static const char acName1A04[] = "LowpassFilteredVoltage";
static const char acName1A04_00[] = "Max SubIndex";
static const char acName1A04_01[] = "LowpassFilteredVoltage";
static const char acName1A05[] = "OhmicSensingSensed";
static const char acName1A05_00[] = "Max SubIndex";
static const char acName1A05_01[] = "OhmicSensingSensed";
static const char acName1A02_01[] = "RawData";
static const char acName1A02_02[] = "CalculatedVoltage";
static const char acName1A02_03[] = "Status";
static const char acName1A02_04[] = "LowpassFilteredVoltage";
static const char acName1A02_05[] = "OhmicSensingSensed";
static const char acName1C00[] = "Sync Manager Communication Type";
static const char acName1C00_00[] = "Max SubIndex";
static const char acName1C00_01[] = "Communications Type SM0";
@@ -63,34 +60,53 @@ static const char acName1C12_00[] = "Max SubIndex";
static const char acName1C12_01[] = "PDO Mapping";
static const char acName1C12_02[] = "PDO Mapping";
static const char acName1C12_03[] = "PDO Mapping";
static const char acName1C12_04[] = "PDO Mapping";
static const char acName1C12_05[] = "PDO Mapping";
static const char acName1C12_06[] = "PDO Mapping";
static const char acName1C12_07[] = "PDO Mapping";
static const char acName1C13[] = "Sync Manager 3 PDO Assignment";
static const char acName1C13_00[] = "Max SubIndex";
static const char acName1C13_01[] = "PDO Mapping";
static const char acName1C13_02[] = "PDO Mapping";
static const char acName1C13_03[] = "PDO Mapping";
static const char acName1C13_04[] = "PDO Mapping";
static const char acName1C13_05[] = "PDO Mapping";
static const char acName1C13_06[] = "PDO Mapping";
static const char acName2000[] = "I2C_devicetype";
static const char acName2001[] = "I2C_address";
static const char acName2002[] = "LowpassFilterPoleFrequency";
static const char acName2000[] = "Settings_Unit1";
static const char acName2000_00[] = "Max SubIndex";
static const char acName2000_01[] = "I2C_devicetype";
static const char acName2000_02[] = "I2C_address";
static const char acName2000_03[] = "LowpassFilterPoleFrequency";
static const char acName2001[] = "Settings_Unit2";
static const char acName2001_00[] = "Max SubIndex";
static const char acName2001_01[] = "I2C_devicetype";
static const char acName2001_02[] = "I2C_address";
static const char acName2001_03[] = "LowpassFilterPoleFrequency";
static const char acName6000[] = "Input12";
static const char acName6001[] = "RawData";
static const char acName6002[] = "CalculatedVoltage";
static const char acName6003[] = "Status";
static const char acName6004[] = "LowpassFilteredVoltage";
static const char acName6005[] = "OhmicSensingSensed";
static const char acName6001[] = "Out_Unit1";
static const char acName6001_00[] = "Max SubIndex";
static const char acName6001_01[] = "RawData";
static const char acName6001_02[] = "CalculatedVoltage";
static const char acName6001_03[] = "Status";
static const char acName6001_04[] = "LowpassFilteredVoltage";
static const char acName6001_05[] = "OhmicSensingSensed";
static const char acName6002[] = "Out_Unit2";
static const char acName6002_00[] = "Max SubIndex";
static const char acName6002_01[] = "RawData";
static const char acName6002_02[] = "CalculatedVoltage";
static const char acName6002_03[] = "Status";
static const char acName6002_04[] = "LowpassFilteredVoltage";
static const char acName6002_05[] = "OhmicSensingSensed";
static const char acName7000[] = "Output4";
static const char acName7001[] = "VoltageScale";
static const char acName7002[] = "VoltageOffset";
static const char acName7003[] = "LowPassFilterThresholdVoltage";
static const char acName7004[] = "EnableOhmicSensing";
static const char acName7005[] = "OhmicSensingSetupTime";
static const char acName7006[] = "OhmicSensingVoltageLimit";
static const char acName7001[] = "In_Unit1";
static const char acName7001_00[] = "Max SubIndex";
static const char acName7001_01[] = "VoltageScale";
static const char acName7001_02[] = "VoltageOffset";
static const char acName7001_03[] = "LowPassFilterThresholdVoltage";
static const char acName7001_04[] = "EnableOhmicSensing";
static const char acName7001_05[] = "OhmicSensingSetupTime";
static const char acName7001_06[] = "OhmicSensingVoltageLimit";
static const char acName7002[] = "In_Unit2";
static const char acName7002_00[] = "Max SubIndex";
static const char acName7002_01[] = "VoltageScale";
static const char acName7002_02[] = "VoltageOffset";
static const char acName7002_03[] = "LowPassFilterThresholdVoltage";
static const char acName7002_04[] = "EnableOhmicSensing";
static const char acName7002_05[] = "OhmicSensingSetupTime";
static const char acName7002_06[] = "OhmicSensingVoltageLimit";
const _objd SDO1000[] =
{
@@ -123,33 +139,23 @@ const _objd SDO1600[] =
};
const _objd SDO1601[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1601_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1601_01, 0x70010020, NULL},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1601_00, 6, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1601_01, 0x70010120, NULL},
{0x02, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1601_02, 0x70010220, NULL},
{0x03, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1601_03, 0x70010320, NULL},
{0x04, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1601_04, 0x70010408, NULL},
{0x05, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1601_05, 0x70010520, NULL},
{0x06, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1601_06, 0x70010620, NULL},
};
const _objd SDO1602[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1602_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1602_01, 0x70020020, NULL},
};
const _objd SDO1603[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1603_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1603_01, 0x70030020, NULL},
};
const _objd SDO1604[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1604_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1604_01, 0x70040008, NULL},
};
const _objd SDO1605[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1605_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1605_01, 0x70050020, NULL},
};
const _objd SDO1606[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1606_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1606_01, 0x70060020, NULL},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1602_00, 6, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1602_01, 0x70020120, NULL},
{0x02, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1602_02, 0x70020220, NULL},
{0x03, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1602_03, 0x70020320, NULL},
{0x04, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1602_04, 0x70020408, NULL},
{0x05, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1602_05, 0x70020520, NULL},
{0x06, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1602_06, 0x70020620, NULL},
};
const _objd SDO1A00[] =
{
@@ -158,28 +164,21 @@ const _objd SDO1A00[] =
};
const _objd SDO1A01[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1A01_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A01_01, 0x60010020, NULL},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1A01_00, 5, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A01_01, 0x60010120, NULL},
{0x02, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A01_02, 0x60010220, NULL},
{0x03, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A01_03, 0x60010320, NULL},
{0x04, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A01_04, 0x60010420, NULL},
{0x05, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A01_05, 0x60010508, NULL},
};
const _objd SDO1A02[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1A02_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A02_01, 0x60020020, NULL},
};
const _objd SDO1A03[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1A03_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A03_01, 0x60030008, NULL},
};
const _objd SDO1A04[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1A04_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A04_01, 0x60040020, NULL},
};
const _objd SDO1A05[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1A05_00, 1, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A05_01, 0x60050008, NULL},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1A02_00, 5, NULL},
{0x01, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A02_01, 0x60020120, NULL},
{0x02, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A02_02, 0x60020220, NULL},
{0x03, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A02_03, 0x60020320, NULL},
{0x04, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A02_04, 0x60020420, NULL},
{0x05, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName1A02_05, 0x60020508, NULL},
};
const _objd SDO1C00[] =
{
@@ -191,36 +190,31 @@ const _objd SDO1C00[] =
};
const _objd SDO1C12[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1C12_00, 7, NULL},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1C12_00, 3, NULL},
{0x01, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C12_01, 0x1600, NULL},
{0x02, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C12_02, 0x1601, NULL},
{0x03, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C12_03, 0x1602, NULL},
{0x04, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C12_04, 0x1603, NULL},
{0x05, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C12_05, 0x1604, NULL},
{0x06, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C12_06, 0x1605, NULL},
{0x07, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C12_07, 0x1606, NULL},
};
const _objd SDO1C13[] =
{
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1C13_00, 6, NULL},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName1C13_00, 3, NULL},
{0x01, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C13_01, 0x1A00, NULL},
{0x02, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C13_02, 0x1A01, NULL},
{0x03, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C13_03, 0x1A02, NULL},
{0x04, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C13_04, 0x1A03, NULL},
{0x05, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C13_05, 0x1A04, NULL},
{0x06, DTYPE_UNSIGNED16, 16, ATYPE_RO, acName1C13_06, 0x1A05, NULL},
};
const _objd SDO2000[] =
{
{0x0, DTYPE_UNSIGNED8, 8, ATYPE_RW, acName2000, 0, &Obj.I2C_devicetype},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName2000_00, 3, NULL},
{0x01, DTYPE_UNSIGNED8, 8, ATYPE_RW, acName2000_01, 0, &Obj.Settings_Unit1.I2C_devicetype},
{0x02, DTYPE_UNSIGNED8, 8, ATYPE_RW, acName2000_02, 0, &Obj.Settings_Unit1.I2C_address},
{0x03, DTYPE_UNSIGNED32, 32, ATYPE_RW, acName2000_03, 0, &Obj.Settings_Unit1.LowpassFilterPoleFrequency},
};
const _objd SDO2001[] =
{
{0x0, DTYPE_UNSIGNED8, 8, ATYPE_RW, acName2001, 0, &Obj.I2C_address},
};
const _objd SDO2002[] =
{
{0x0, DTYPE_UNSIGNED32, 32, ATYPE_RW, acName2002, 0, &Obj.LowpassFilterPoleFrequency},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName2001_00, 3, NULL},
{0x01, DTYPE_UNSIGNED8, 8, ATYPE_RW, acName2001_01, 0, &Obj.Settings_Unit2.I2C_devicetype},
{0x02, DTYPE_UNSIGNED8, 8, ATYPE_RW, acName2001_02, 0, &Obj.Settings_Unit2.I2C_address},
{0x03, DTYPE_UNSIGNED32, 32, ATYPE_RW, acName2001_03, 0, &Obj.Settings_Unit2.LowpassFilterPoleFrequency},
};
const _objd SDO6000[] =
{
@@ -228,23 +222,21 @@ const _objd SDO6000[] =
};
const _objd SDO6001[] =
{
{0x0, DTYPE_INTEGER32, 32, ATYPE_RO | ATYPE_TXPDO, acName6001, 0, &Obj.RawData},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName6001_00, 5, NULL},
{0x01, DTYPE_INTEGER32, 32, ATYPE_RO, acName6001_01, 0, &Obj.Out_Unit1.RawData},
{0x02, DTYPE_REAL32, 32, ATYPE_RO, acName6001_02, 0x00000000, &Obj.Out_Unit1.CalculatedVoltage},
{0x03, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName6001_03, 0, &Obj.Out_Unit1.Status},
{0x04, DTYPE_REAL32, 32, ATYPE_RO, acName6001_04, 0x00000000, &Obj.Out_Unit1.LowpassFilteredVoltage},
{0x05, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName6001_05, 0, &Obj.Out_Unit1.OhmicSensingSensed},
};
const _objd SDO6002[] =
{
{0x0, DTYPE_REAL32, 32, ATYPE_RO | ATYPE_TXPDO, acName6002, 0x00000000, &Obj.CalculatedVoltage},
};
const _objd SDO6003[] =
{
{0x0, DTYPE_UNSIGNED8, 8, ATYPE_RO | ATYPE_TXPDO, acName6003, 0, &Obj.Status},
};
const _objd SDO6004[] =
{
{0x0, DTYPE_REAL32, 32, ATYPE_RO | ATYPE_TXPDO, acName6004, 0x00000000, &Obj.LowpassFilteredVoltage},
};
const _objd SDO6005[] =
{
{0x0, DTYPE_UNSIGNED8, 8, ATYPE_RO | ATYPE_TXPDO, acName6005, 0, &Obj.OhmicSensingSensed},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName6002_00, 5, NULL},
{0x01, DTYPE_INTEGER32, 32, ATYPE_RO, acName6002_01, 0, &Obj.Out_Unit2.RawData},
{0x02, DTYPE_REAL32, 32, ATYPE_RO, acName6002_02, 0x00000000, &Obj.Out_Unit2.CalculatedVoltage},
{0x03, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName6002_03, 0, &Obj.Out_Unit2.Status},
{0x04, DTYPE_REAL32, 32, ATYPE_RO, acName6002_04, 0x00000000, &Obj.Out_Unit2.LowpassFilteredVoltage},
{0x05, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName6002_05, 0, &Obj.Out_Unit2.OhmicSensingSensed},
};
const _objd SDO7000[] =
{
@@ -252,27 +244,23 @@ const _objd SDO7000[] =
};
const _objd SDO7001[] =
{
{0x0, DTYPE_REAL32, 32, ATYPE_RO | ATYPE_RXPDO, acName7001, 0x00000000, &Obj.VoltageScale},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName7001_00, 6, NULL},
{0x01, DTYPE_REAL32, 32, ATYPE_RO, acName7001_01, 0x00000000, &Obj.In_Unit1.VoltageScale},
{0x02, DTYPE_REAL32, 32, ATYPE_RO, acName7001_02, 0x00000000, &Obj.In_Unit1.VoltageOffset},
{0x03, DTYPE_REAL32, 32, ATYPE_RO, acName7001_03, 0x00000000, &Obj.In_Unit1.LowPassFilterThresholdVoltage},
{0x04, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName7001_04, 0, &Obj.In_Unit1.EnableOhmicSensing},
{0x05, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName7001_05, 0, &Obj.In_Unit1.OhmicSensingSetupTime},
{0x06, DTYPE_REAL32, 32, ATYPE_RO, acName7001_06, 0x00000000, &Obj.In_Unit1.OhmicSensingVoltageLimit},
};
const _objd SDO7002[] =
{
{0x0, DTYPE_REAL32, 32, ATYPE_RO | ATYPE_RXPDO, acName7002, 0x00000000, &Obj.VoltageOffset},
};
const _objd SDO7003[] =
{
{0x0, DTYPE_REAL32, 32, ATYPE_RO | ATYPE_RXPDO, acName7003, 0x00000000, &Obj.LowPassFilterThresholdVoltage},
};
const _objd SDO7004[] =
{
{0x0, DTYPE_UNSIGNED8, 8, ATYPE_RO | ATYPE_RXPDO, acName7004, 0, &Obj.EnableOhmicSensing},
};
const _objd SDO7005[] =
{
{0x0, DTYPE_UNSIGNED32, 32, ATYPE_RO | ATYPE_RXPDO, acName7005, 0, &Obj.OhmicSensingSetupTime},
};
const _objd SDO7006[] =
{
{0x0, DTYPE_REAL32, 32, ATYPE_RO | ATYPE_RXPDO, acName7006, 0x00000000, &Obj.OhmicSensingVoltageLimit},
{0x00, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName7002_00, 6, NULL},
{0x01, DTYPE_REAL32, 32, ATYPE_RO, acName7002_01, 0x00000000, &Obj.In_Unit2.VoltageScale},
{0x02, DTYPE_REAL32, 32, ATYPE_RO, acName7002_02, 0x00000000, &Obj.In_Unit2.VoltageOffset},
{0x03, DTYPE_REAL32, 32, ATYPE_RO, acName7002_03, 0x00000000, &Obj.In_Unit2.LowPassFilterThresholdVoltage},
{0x04, DTYPE_UNSIGNED8, 8, ATYPE_RO, acName7002_04, 0, &Obj.In_Unit2.EnableOhmicSensing},
{0x05, DTYPE_UNSIGNED32, 32, ATYPE_RO, acName7002_05, 0, &Obj.In_Unit2.OhmicSensingSetupTime},
{0x06, DTYPE_REAL32, 32, ATYPE_RO, acName7002_06, 0x00000000, &Obj.In_Unit2.OhmicSensingVoltageLimit},
};
const _objectlist SDOobjects[] =
@@ -283,36 +271,21 @@ const _objectlist SDOobjects[] =
{0x100A, OTYPE_VAR, 0, 0, acName100A, SDO100A},
{0x1018, OTYPE_RECORD, 4, 0, acName1018, SDO1018},
{0x1600, OTYPE_RECORD, 1, 0, acName1600, SDO1600},
{0x1601, OTYPE_RECORD, 1, 0, acName1601, SDO1601},
{0x1602, OTYPE_RECORD, 1, 0, acName1602, SDO1602},
{0x1603, OTYPE_RECORD, 1, 0, acName1603, SDO1603},
{0x1604, OTYPE_RECORD, 1, 0, acName1604, SDO1604},
{0x1605, OTYPE_RECORD, 1, 0, acName1605, SDO1605},
{0x1606, OTYPE_RECORD, 1, 0, acName1606, SDO1606},
{0x1601, OTYPE_RECORD, 6, 0, acName1601, SDO1601},
{0x1602, OTYPE_RECORD, 6, 0, acName1602, SDO1602},
{0x1A00, OTYPE_RECORD, 1, 0, acName1A00, SDO1A00},
{0x1A01, OTYPE_RECORD, 1, 0, acName1A01, SDO1A01},
{0x1A02, OTYPE_RECORD, 1, 0, acName1A02, SDO1A02},
{0x1A03, OTYPE_RECORD, 1, 0, acName1A03, SDO1A03},
{0x1A04, OTYPE_RECORD, 1, 0, acName1A04, SDO1A04},
{0x1A05, OTYPE_RECORD, 1, 0, acName1A05, SDO1A05},
{0x1A01, OTYPE_RECORD, 5, 0, acName1A01, SDO1A01},
{0x1A02, OTYPE_RECORD, 5, 0, acName1A02, SDO1A02},
{0x1C00, OTYPE_ARRAY, 4, 0, acName1C00, SDO1C00},
{0x1C12, OTYPE_ARRAY, 7, 0, acName1C12, SDO1C12},
{0x1C13, OTYPE_ARRAY, 6, 0, acName1C13, SDO1C13},
{0x2000, OTYPE_VAR, 0, 0, acName2000, SDO2000},
{0x2001, OTYPE_VAR, 0, 0, acName2001, SDO2001},
{0x2002, OTYPE_VAR, 0, 0, acName2002, SDO2002},
{0x1C12, OTYPE_ARRAY, 3, 0, acName1C12, SDO1C12},
{0x1C13, OTYPE_ARRAY, 3, 0, acName1C13, SDO1C13},
{0x2000, OTYPE_RECORD, 3, 0, acName2000, SDO2000},
{0x2001, OTYPE_RECORD, 3, 0, acName2001, SDO2001},
{0x6000, OTYPE_VAR, 0, 0, acName6000, SDO6000},
{0x6001, OTYPE_VAR, 0, 0, acName6001, SDO6001},
{0x6002, OTYPE_VAR, 0, 0, acName6002, SDO6002},
{0x6003, OTYPE_VAR, 0, 0, acName6003, SDO6003},
{0x6004, OTYPE_VAR, 0, 0, acName6004, SDO6004},
{0x6005, OTYPE_VAR, 0, 0, acName6005, SDO6005},
{0x6001, OTYPE_RECORD, 5, 0, acName6001, SDO6001},
{0x6002, OTYPE_RECORD, 5, 0, acName6002, SDO6002},
{0x7000, OTYPE_VAR, 0, 0, acName7000, SDO7000},
{0x7001, OTYPE_VAR, 0, 0, acName7001, SDO7001},
{0x7002, OTYPE_VAR, 0, 0, acName7002, SDO7002},
{0x7003, OTYPE_VAR, 0, 0, acName7003, SDO7003},
{0x7004, OTYPE_VAR, 0, 0, acName7004, SDO7004},
{0x7005, OTYPE_VAR, 0, 0, acName7005, SDO7005},
{0x7006, OTYPE_VAR, 0, 0, acName7006, SDO7006},
{0x7001, OTYPE_RECORD, 6, 0, acName7001, SDO7001},
{0x7002, OTYPE_RECORD, 6, 0, acName7002, SDO7002},
{0xffff, 0xff, 0xff, 0xff, NULL, NULL}
};

View File

@@ -14,27 +14,59 @@ typedef struct
/* Inputs */
int32_t Input12;
int32_t RawData;
float CalculatedVoltage;
uint8_t Status;
float LowpassFilteredVoltage;
uint8_t OhmicSensingSensed;
struct
{
int32_t RawData;
float CalculatedVoltage;
uint32_t Status;
float LowpassFilteredVoltage;
uint8_t OhmicSensingSensed;
} Out_Unit1;
struct
{
int32_t RawData;
float CalculatedVoltage;
uint32_t Status;
float LowpassFilteredVoltage;
uint8_t OhmicSensingSensed;
} Out_Unit2;
/* Outputs */
uint8_t Output4;
float VoltageScale;
float VoltageOffset;
float LowPassFilterThresholdVoltage;
uint8_t EnableOhmicSensing;
uint32_t OhmicSensingSetupTime;
float OhmicSensingVoltageLimit;
struct
{
float VoltageScale;
float VoltageOffset;
float LowPassFilterThresholdVoltage;
uint8_t EnableOhmicSensing;
uint32_t OhmicSensingSetupTime;
float OhmicSensingVoltageLimit;
} In_Unit1;
struct
{
float VoltageScale;
float VoltageOffset;
float LowPassFilterThresholdVoltage;
uint8_t EnableOhmicSensing;
uint32_t OhmicSensingSetupTime;
float OhmicSensingVoltageLimit;
} In_Unit2;
/* Parameters */
uint8_t I2C_devicetype;
uint8_t I2C_address;
uint32_t LowpassFilterPoleFrequency;
struct
{
uint8_t I2C_devicetype;
uint8_t I2C_address;
uint32_t LowpassFilterPoleFrequency;
} Settings_Unit1;
struct
{
uint8_t I2C_devicetype;
uint8_t I2C_address;
uint32_t LowpassFilterPoleFrequency;
} Settings_Unit2;
} _Objects;
extern _Objects Obj;

View File

@@ -17,29 +17,35 @@ uint8_t inputPin[] = {PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PB15, PB14,
uint8_t outputPin[] = {PE10, PE9, PE8, PE7};
const uint32_t I2C_BUS_SPEED = 400000;
uint32_t I2C_restarts = 0;
uint32_t I2C_restarts_1 = 0, I2C_restarts_2 = 0;
const uint8_t MCP3221_TYPE = 1, ADS1014_TYPE = 2;
int8_t old_I2Cdevice = -1;
int8_t old_I2Cdevice_1 = -1;
int8_t old_I2Cdevice_2 = -1;
#include "Wire.h"
TwoWire Wire2(PB11, PB10);
#include "MyMCP3221.h"
MyMCP3221 *mcp3221 = 0;
MyMCP3221 *mcp3221_1 = 0;
MyMCP3221 *mcp3221_2 = 0;
#include "ADS1X15.h"
ADS1014 *ads1014 = 0;
ADS1014 *ads1014_1 = 0;
ADS1014 *ads1014_2 = 0;
void ads1014_reset()
void ads1014_reset(ADS1014 *ads)
{
ads1014->reset();
ads1014->begin();
ads1014->setGain(1); // 1=4.096V
ads1014->setMode(0); // 0 continuous
ads1014->setDataRate(6); // Max for ads101x
ads1014->readADC_Differential_0_1(); // This is the value we are interested in
ads->reset();
ads->begin();
ads->setGain(1); // 1=4.096V
ads->setMode(0); // 0 continuous
ads->setDataRate(6); // Max for ads101x
ads->readADC_Differential_0_1(); // This is the value we are interested in
}
void handleVoltageReader(float scale_in, float offset, float outVoltage, int32_t outRaw,
float &oldVoltage, float &oldRaw,
uint8_t devType, int8_t &old_devType, uint8_t &readStat, uint32_t &outStatus, ADS1014 *ads, MyMCP3221 *mcp, uint8_t I2C_address, uint32_t &I2C_restarts);
#define bitset(byte, nbit) ((byte) |= (1 << (nbit)))
#define bitclear(byte, nbit) ((byte) &= ~(1 << (nbit)))
#define bitflip(byte, nbit) ((byte) ^= (1 << (nbit)))
@@ -63,106 +69,204 @@ uint32_t timeSinceOhmicSensingEnabled = 0;
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
{
static float validData0 = 0.0, validVoltage0 = 0.0;
static float validData0_1 = 0.0, validVoltage0_1 = 0.0;
static float validData0_2 = 0.0, validVoltage0_2 = 0.0;
uint8_t stat_1, stat_2;
for (int i = 0; i < sizeof(inputPin); i++)
Obj.Input12 = digitalRead(inputPin[i]) == HIGH ? bitset(Obj.Input12, i) : bitclear(Obj.Input12, i);
float scale = Obj.VoltageScale;
if (scale == 0.0)
scale = 1.0;
int stat = 1, data0;
switch (Obj.I2C_devicetype)
handleVoltageReader(Obj.In_Unit1.VoltageScale, Obj.In_Unit1.VoltageOffset, Obj.Out_Unit1.CalculatedVoltage, Obj.Out_Unit1.RawData,
validVoltage0_1, validData0_1,
Obj.Settings_Unit1.I2C_devicetype, old_I2Cdevice_1, stat_1, Obj.Out_Unit1.Status,
ads1014_1, mcp3221_1, Obj.Settings_Unit1.I2C_address, I2C_restarts_1);
handleVoltageReader(Obj.In_Unit2.VoltageScale, Obj.In_Unit2.VoltageOffset, Obj.Out_Unit2.CalculatedVoltage, Obj.Out_Unit2.RawData,
validVoltage0_2, validData0_2,
Obj.Settings_Unit2.I2C_devicetype, old_I2Cdevice_2, stat_2, Obj.Out_Unit2.Status,
ads1014_2, mcp3221_2, Obj.Settings_Unit2.I2C_address, I2C_restarts_2);
#if 0
float scale_1 = Obj.In_Unit1.VoltageScale;
if (scale_1 == 0.0)
scale_1 = 1.0;
int stat_1 = 1, data0_1;
switch (Obj.Settings_Unit1.I2C_devicetype)
{
case 0: // Not configured.
Obj.Status = 0;
stat = data0 = 0;
Obj.Out_Unit1.Status = 0;
stat_1 = data0_1 = 0;
break;
case MCP3221_TYPE:
if (old_I2Cdevice != Obj.I2C_devicetype) // Initilize and make ready
if (old_I2Cdevice_1 != Obj.Settings_Unit1.I2C_devicetype) // Initilize and make ready
{
if (ads1014)
if (ads1014_1)
{
delete ads1014;
ads1014 = 0;
delete ads1014_1;
ads1014_1 = 0;
}
if (mcp3221)
if (mcp3221_1)
{
delete mcp3221;
mcp3221 = 0;
delete mcp3221_1;
mcp3221_1 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
mcp3221 = new MyMCP3221(Obj.I2C_address, &Wire2);
old_I2Cdevice = mcp3221 ? MCP3221_TYPE : -1;
mcp3221_1 = new MyMCP3221(Obj.Settings_Unit1.I2C_address, &Wire2);
old_I2Cdevice_1 = mcp3221_1 ? MCP3221_TYPE : -1;
}
data0 = mcp3221->getData();
stat = mcp3221->ping();
data0_1 = mcp3221_1->getData();
stat_1 = mcp3221_1->ping();
break;
case ADS1014_TYPE:
if (old_I2Cdevice != Obj.I2C_devicetype) // Initilize and make ready
if (old_I2Cdevice_1 != Obj.Settings_Unit1.I2C_devicetype) // Initilize and make ready
{
if (ads1014)
if (ads1014_1)
{
delete ads1014;
ads1014 = 0;
delete ads1014_1;
ads1014_1 = 0;
}
if (mcp3221)
if (mcp3221_1)
{
delete mcp3221;
mcp3221 = 0;
delete mcp3221_1;
mcp3221_1 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
ads1014 = new ADS1014(Obj.I2C_address, &Wire2);
ads1014_reset();
old_I2Cdevice = ADS1014_TYPE;
ads1014_1 = new ADS1014(Obj.Settings_Unit1.I2C_address, &Wire2);
ads1014_reset(ads1014_1);
old_I2Cdevice_1 = ADS1014_TYPE;
}
data0 = ads1014->getValue();
stat = ads1014->isConnected() == 1 ? 0 : 1;
data0_1 = ads1014_1->getValue();
stat_1 = ads1014_1->isConnected() == 1 ? 0 : 1;
break;
default: // Not supported
break;
}
if (stat == 0)
{ // Read good value
Obj.CalculatedVoltage = scale * data0 + Obj.VoltageOffset; //
Obj.RawData = data0; // Raw voltage, read by ADC
validVoltage0 = Obj.CalculatedVoltage;
validData0 = data0;
if (stat_1 == 0)
{ // Read good value
Obj.Out_Unit1.CalculatedVoltage = scale_1 * data0_1 + Obj.In_Unit1.VoltageOffset; //
Obj.Out_Unit1.RawData = data0_1; // Raw voltage, read by ADC
validVoltage0_1 = Obj.Out_Unit1.CalculatedVoltage;
validData0_1 = data0_1;
}
else
{ // Didn't read a good value. Return a hopefully useful value and restart the I2C bus
Obj.CalculatedVoltage = validVoltage0; // Use value from previous call
Obj.RawData = validData0;
{ // Didn't read a good value. Return a hopefully useful value and restart the I2C bus
Obj.Out_Unit1.CalculatedVoltage = validVoltage0_1; // Use value from previous call
Obj.Out_Unit1.RawData = validData0_1;
// Reset wire here
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
I2C_restarts++;
if (Obj.I2C_devicetype == ADS1014_TYPE)
ads1014_reset();
I2C_restarts_1++;
if (Obj.Settings_Unit1.I2C_devicetype == ADS1014_TYPE)
ads1014_reset(ads1014_1);
// mcp3221 has no reset, reset the I2C bus is the best we can do
}
Obj.Status = I2C_restarts + (stat << 28); // Put status as bits 28-31, the lower are number of restarts (restart attempts)
Obj.Out_Unit1.Status = I2C_restarts_1 + (stat_1 << 28); // Put status as bits 28-31, the lower are number of restarts (restart attempts)
#endif
#if 0
float scale_2 = Obj.In_Unit2.VoltageScale;
if (scale_2 == 0.0)
scale_2 = 1.0;
int stat_2 = 1, data0_2;
switch (Obj.Settings_Unit2.I2C_devicetype)
{
case 0: // Not configured.
Obj.Out_Unit2.Status = 0;
stat_2 = data0_2 = 0;
break;
case MCP3221_TYPE:
if (old_I2Cdevice_2 != Obj.Settings_Unit2.I2C_devicetype) // Initilize and make ready
{
if (ads1014_2)
{
delete ads1014_2;
ads1014_2 = 0;
}
if (mcp3221_2)
{
delete mcp3221_2;
mcp3221_2 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
mcp3221_2 = new MyMCP3221(Obj.Settings_Unit2.I2C_address, &Wire2);
old_I2Cdevice_2 = mcp3221_2 ? MCP3221_TYPE : -1;
}
data0_2 = mcp3221_2->getData();
stat_2 = mcp3221_2->ping();
break;
case ADS1014_TYPE:
if (old_I2Cdevice_2 != Obj.Settings_Unit2.I2C_devicetype) // Initilize and make ready
{
if (ads1014_2)
{
delete ads1014_2;
ads1014_2 = 0;
}
if (mcp3221_2)
{
delete mcp3221_2;
mcp3221_2 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
ads1014_2 = new ADS1014(Obj.Settings_Unit2.I2C_address, &Wire2);
ads1014_reset(ads1014_2);
old_I2Cdevice_2 = ADS1014_TYPE;
}
data0_2 = ads1014_2->getValue();
stat_2 = ads1014_2->isConnected() == 1 ? 0 : 1;
break;
default: // Not supported
break;
}
if (stat_2 == 0)
{ // Read good value
Obj.Out_Unit2.CalculatedVoltage = scale_2 * data0_2 + Obj.In_Unit2.VoltageOffset; //
Obj.Out_Unit2.RawData = data0_2; // Raw voltage, read by ADC
validVoltage0_2 = Obj.Out_Unit2.CalculatedVoltage;
validData0_2 = data0_2;
}
else
{ // Didn't read a good value. Return a hopefully useful value and restart the I2C bus
Obj.Out_Unit2.CalculatedVoltage = validVoltage0_2; // Use value from previous call
Obj.Out_Unit2.RawData = validData0_2;
// Reset wire here
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
I2C_restarts_2++;
if (Obj.Settings_Unit2.I2C_devicetype == ADS1014_TYPE)
ads1014_reset(ads1014_2);
// mcp3221 has no reset, reset the I2C bus is the best we can do
}
Obj.Out_Unit2.Status = I2C_restarts_2 + (stat_2 << 28); // Put status as bits 28-31, the lower are number of restarts (restart attempts)
#endif
// Low pass filter. See lowpass in linuxcnc doc
float gain = oldLowPassGain;
if (oldLowpassFilterPoleFrequency != Obj.LowpassFilterPoleFrequency)
if (oldLowpassFilterPoleFrequency != Obj.Settings_Unit1.LowpassFilterPoleFrequency)
{
gain = 1 - expf(-2.0 * M_PI * Obj.LowpassFilterPoleFrequency * 0.001 /*1.0e-9 * ESC_SYNC0cycletime()*/);
gain = 1 - expf(-2.0 * M_PI * Obj.Settings_Unit1.LowpassFilterPoleFrequency * 0.001 /*1.0e-9 * ESC_SYNC0cycletime()*/);
oldLowPassGain = gain;
oldLowpassFilterPoleFrequency = Obj.LowpassFilterPoleFrequency;
oldLowpassFilterPoleFrequency = Obj.Settings_Unit1.LowpassFilterPoleFrequency;
}
if (Obj.CalculatedVoltage < Obj.LowPassFilterThresholdVoltage)
Obj.LowpassFilteredVoltage = Obj.CalculatedVoltage; // Just forward
if (Obj.Out_Unit1.CalculatedVoltage < Obj.In_Unit1.LowPassFilterThresholdVoltage)
Obj.Out_Unit1.LowpassFilteredVoltage = Obj.Out_Unit1.CalculatedVoltage; // Just forward
else
Obj.LowpassFilteredVoltage = oldLowPassFilteredVoltage + (Obj.CalculatedVoltage - oldLowPassFilteredVoltage) * gain;
oldLowPassFilteredVoltage = Obj.LowpassFilteredVoltage;
Obj.Out_Unit1.LowpassFilteredVoltage = oldLowPassFilteredVoltage + (Obj.Out_Unit1.CalculatedVoltage - oldLowPassFilteredVoltage) * gain;
oldLowPassFilteredVoltage = Obj.Out_Unit1.LowpassFilteredVoltage;
#if 0
Obj.OhmicSensingSensed = 0;
if (Obj.EnableOhmicSensing && stat == 0)
{
@@ -179,6 +283,45 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
{
timeSinceOhmicSensingEnabled = 0;
}
#else
#define OHMIC_IDLE 0
#define OHMIC_PROBE 1
static uint8_t ohmicState_1 = OHMIC_IDLE;
static uint8_t ohmicState_2 = OHMIC_IDLE;
Obj.Out_Unit1.OhmicSensingSensed = 0;
if (Obj.In_Unit1.EnableOhmicSensing && stat_1 == 0)
{
if (ohmicState_1 == OHMIC_IDLE && Obj.Out_Unit1.CalculatedVoltage > Obj.In_Unit1.OhmicSensingVoltageLimit)
{
ohmicState_1 = OHMIC_PROBE;
}
if (ohmicState_1 == OHMIC_PROBE && Obj.Out_Unit1.CalculatedVoltage <= Obj.In_Unit1.OhmicSensingVoltageLimit)
{
Obj.Out_Unit1.OhmicSensingSensed = 1;
}
}
else
{
ohmicState_1 = OHMIC_IDLE;
}
Obj.Out_Unit2.OhmicSensingSensed = 0;
if (Obj.In_Unit2.EnableOhmicSensing && stat_2 == 0)
{
if (ohmicState_2 == OHMIC_IDLE && Obj.Out_Unit2.CalculatedVoltage > Obj.In_Unit2.OhmicSensingVoltageLimit)
{
ohmicState_2 = OHMIC_PROBE;
}
if (ohmicState_2 == OHMIC_PROBE && Obj.Out_Unit2.CalculatedVoltage <= Obj.In_Unit2.OhmicSensingVoltageLimit)
{
Obj.Out_Unit2.OhmicSensingSensed = 1;
}
}
else
{
ohmicState_2 = OHMIC_IDLE;
}
#endif
}
void ESC_interrupt_enable(uint32_t mask);
@@ -248,8 +391,8 @@ void setup(void)
mcp3221 = new MyMCP3221(0x48, &Wire2);
#endif
#ifdef ADS1xxx
ads1014 = new ADS1014(0x48, &Wire2);
ads1014_reset();
ads1014_1 = new ADS1014(0x49, &Wire2);
ads1014_reset(ads1014_1);
#endif
while (1) // Search I2C bus for devices
{
@@ -273,14 +416,14 @@ void setup(void)
// else Serial1.printf("I2C status=%d rawdata=%d pin0=%d pin1=%d\n", ads1014.isConnected() ? 0 : -1, ads1014.readADC_Differential_0_1(), ads1014.readADC(0), ads1014.readADC(1));
// Serial1.println(ads1014.toVoltage(ads1014.readADC_Differential_0_1()), 5);
for (int i = 0; i < 10; i++)
Serial1.println(ads1014->getValue());
Serial1.println(ads1014_1->getValue());
int dummy = 0;
uint32_t then = micros();
for (int i = 0; i < 1000; i++)
dummy += ads1014->getValue();
dummy += ads1014_1->getValue();
uint32_t now = micros();
Serial1.printf("1000 I2C readings take %d microseconds\n", now - then);
Serial1.println(ads1014->toVoltage(ads1014->getValue()),4);
Serial1.println(ads1014_1->toVoltage(ads1014_1->getValue()), 4);
#endif
for (int i = 0; i < 12; i++)
Serial1.printf("%u", digitalRead(inputPin[i]));
@@ -365,3 +508,95 @@ uint16_t dc_checker(void)
ESCvar.dcsync = 1;
return 0;
}
#if 1
void handleVoltageReader(float scale_in, float offset, float outVoltage, int32_t outRaw,
float &oldVoltage, float &oldRaw,
uint8_t devType, int8_t &old_devType, uint8_t &readStat, uint32_t &outStatus,
ADS1014 *ads, MyMCP3221 *mcp, uint8_t I2C_address, uint32_t &I2C_restarts)
{
float scale = scale_in;
if (scale == 0.0)
scale = 1.0;
int stat = 1, data0;
switch (devType)
{
case 0: // Not configured.
outStatus = 0;
stat = data0 = 0;
break;
case MCP3221_TYPE:
if (old_devType != devType) // Initilize and make ready
{
if (ads)
{
delete ads;
ads = 0;
}
if (mcp)
{
delete mcp;
mcp = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
mcp = new MyMCP3221(I2C_address, &Wire2);
old_devType = mcp ? MCP3221_TYPE : -1;
}
data0 = mcp->getData();
stat = mcp->ping();
break;
case ADS1014_TYPE:
if (old_devType != devType) // Initilize and make ready
{
if (ads)
{
delete ads;
ads = 0;
}
if (mcp)
{
delete mcp;
mcp = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
ads = new ADS1014(I2C_address, &Wire2);
ads1014_reset(ads);
old_devType = ads ? ADS1014_TYPE : -1;
}
data0 = ads->getValue();
stat = ads->isConnected() == 1 ? 0 : 1;
break;
default: // Not supported
break;
}
if (stat == 0)
{ // Read good value
outVoltage = scale * data0 + offset; //
outRaw = data0; // Raw voltage, read by ADC
oldVoltage = outVoltage;
oldRaw = data0;
}
else
{ // Didn't read a good value. Return a hopefully useful value and restart the I2C bus
outVoltage = oldVoltage; // Use value from previous call
outRaw = oldRaw;
// Reset wire here
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
I2C_restarts++;
if (devType == ADS1014_TYPE)
ads1014_reset(ads);
// mcp3221 has no reset, reset the I2C bus is the best we can do
}
readStat = stat;
outStatus = I2C_restarts + (stat << 28); // Put status as bits 28-31, the lower are number of restarts (restart attempts)
}
#endif