Files
MyOwnEtherCATDevice/Cards/EaserCAT-7000-DIO+I2C/Firmware/src/main.cpp
Hakan Bastedt a19a3b5b4e Got hypersensing to work pretty reliably now.
Unfortunately indentation changes.
2025-10-18 21:36:26 +02:00

429 lines
14 KiB
C++
Executable File

#include <Arduino.h>
#include <stdio.h>
extern "C" {
#include "ecat_slv.h"
#include "utypes.h"
};
_Objects Obj;
#include "extend32to64.h"
extend32to64 longTime;
HardwareSerial Serial1(PA10, PA9);
uint8_t inputPin[] = {PD15, PD14, PD13, PD12, PD11, PD10,
PD9, PD8, PB15, PB14, PB13, PB12};
uint8_t outputPin[] = {PE10, PE9, PE8, PE7};
const uint32_t I2C_BUS_SPEED = 400000;
uint32_t I2C_restarts_1 = 0, I2C_restarts_2 = 0;
const uint8_t MCP3221_TYPE = 1, ADS1014_TYPE = 2;
int8_t old_I2Cdevice_1 = -1;
int8_t old_I2Cdevice_2 = -1;
#include "Wire.h"
TwoWire Wire2(PB11, PB10);
#include "MyMCP3221.h"
MyMCP3221 *mcp3221_1 = 0;
MyMCP3221 *mcp3221_2 = 0;
#include "ADS1X15.h"
ADS1014 *ads1014_1 = 0;
ADS1014 *ads1014_2 = 0;
void ads1014_reset(ADS1014 *ads) {
ads->reset();
ads->begin();
ads->setGain(1); // 1=4.096V
ads->setMode(0); // 0 continuous
ads->setDataRate(6); // Max for ads101x
ads->readADC_Differential_0_1(); // This is the value we are interested in
}
#include <queue>
class OhmicSensing {
public:
void handle(uint8_t voltageState, float inVoltage, float limitVoltage,
float voltageDropLimit, uint32_t setupTime, uint8_t enabled,
uint8_t &sensed);
// private:
enum OhmicStates { OHMIC_IDLE, OHMIC_SETUP, OHMIC_PROBE };
OhmicStates ohmicState = OHMIC_IDLE;
uint64_t startTime;
float_t oldVoltage = 0.0;
std::queue<float> voltages;
float_t refVoltage;
};
OhmicSensing Ohm1;
OhmicSensing Ohm2;
void handleVoltageReader(float scale_in, float offset, float &outVoltage,
int32_t &outRaw, float &oldVoltage, float &oldRaw,
uint8_t devType, int8_t &old_devType,
uint8_t &readStat, uint32_t &outStatus, ADS1014 *&ads,
MyMCP3221 *&mcp, uint8_t I2C_address,
uint32_t &I2C_restarts);
void lowpassFilter(float &oldLowPassGain,
uint32_t &oldLowpassFilterPoleFrequency,
float &oldLowPassFilteredVoltage,
uint32_t LowpassFilterPoleFrequency,
float LowPassFilterThresholdVoltage, float inVoltage,
float &outFilteredVoltage);
#define bitset(byte, nbit) ((byte) |= (1 << (nbit)))
#define bitclear(byte, nbit) ((byte) &= ~(1 << (nbit)))
#define bitflip(byte, nbit) ((byte) ^= (1 << (nbit)))
#define bitcheck(byte, nbit) ((byte) & (1 << (nbit)))
extern "C" uint32_t ESC_SYNC0cycletime(void);
void cb_set_outputs(void) // Get Master outputs, slave inputs, first operation
{
// Update digital output pins
for (int i = 0; i < sizeof(outputPin); i++)
digitalWrite(outputPin[i], bitcheck(Obj.Output4, i) ? HIGH : LOW);
}
float oldLowPassGain_1 = 0, oldLowPassGain_2 = 0;
float oldLowPassFilteredVoltage_1 = 0, oldLowPassFilteredVoltage_2 = 0;
uint32_t oldLowpassFilterPoleFrequency_1 = 0,
oldLowpassFilterPoleFrequency_2 = 0;
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
{
static float validData0_1 = 0.0, validVoltage0_1 = 0.0;
static float validData0_2 = 0.0, validVoltage0_2 = 0.0;
uint8_t stat_1, stat_2;
for (int i = 0; i < sizeof(inputPin); i++)
Obj.Input12 = digitalRead(inputPin[i]) == HIGH ? bitset(Obj.Input12, i)
: bitclear(Obj.Input12, i);
handleVoltageReader(Obj.In_Unit1.VoltageScale, Obj.In_Unit1.VoltageOffset,
Obj.Out_Unit1.CalculatedVoltage, Obj.Out_Unit1.RawData,
validVoltage0_1, validData0_1,
Obj.Settings_Unit1.I2C_devicetype, old_I2Cdevice_1,
stat_1, Obj.Out_Unit1.Status, ads1014_1, mcp3221_1,
Obj.Settings_Unit1.I2C_address, I2C_restarts_1);
handleVoltageReader(Obj.In_Unit2.VoltageScale, Obj.In_Unit2.VoltageOffset,
Obj.Out_Unit2.CalculatedVoltage, Obj.Out_Unit2.RawData,
validVoltage0_2, validData0_2,
Obj.Settings_Unit2.I2C_devicetype, old_I2Cdevice_2,
stat_2, Obj.Out_Unit2.Status, ads1014_2, mcp3221_2,
Obj.Settings_Unit2.I2C_address, I2C_restarts_2);
lowpassFilter(oldLowPassGain_1, oldLowpassFilterPoleFrequency_1,
oldLowPassFilteredVoltage_1,
Obj.Settings_Unit1.LowpassFilterPoleFrequency,
Obj.In_Unit1.LowPassFilterThresholdVoltage,
Obj.Out_Unit1.CalculatedVoltage,
Obj.Out_Unit1.LowpassFilteredVoltage);
lowpassFilter(oldLowPassGain_2, oldLowpassFilterPoleFrequency_2,
oldLowPassFilteredVoltage_2,
Obj.Settings_Unit2.LowpassFilterPoleFrequency,
Obj.In_Unit2.LowPassFilterThresholdVoltage,
Obj.Out_Unit2.CalculatedVoltage,
Obj.Out_Unit2.LowpassFilteredVoltage);
Ohm1.handle(
stat_1, Obj.Out_Unit1.CalculatedVoltage,
Obj.In_Unit1.OhmicSensingVoltageLimit,
Obj.In_Unit1.OhmicSensingVoltageDrop, Obj.In_Unit1.OhmicSensingSetupTime,
Obj.In_Unit1.EnableOhmicSensing, Obj.Out_Unit1.OhmicSensingSensed);
Ohm2.handle(
stat_2, Obj.Out_Unit2.CalculatedVoltage,
Obj.In_Unit2.OhmicSensingVoltageLimit,
Obj.In_Unit2.OhmicSensingVoltageDrop, Obj.In_Unit2.OhmicSensingSetupTime,
Obj.In_Unit2.EnableOhmicSensing, Obj.Out_Unit2.OhmicSensingSensed);
Obj.Out_Unit1.RawData = (int)Ohm2.ohmicState;
}
uint16_t dc_checker(void);
static esc_cfg_t config = {
.user_arg = NULL,
.use_interrupt = 1,
.watchdog_cnt = 150,
.set_defaults_hook = NULL,
.pre_state_change_hook = NULL,
.post_state_change_hook = NULL,
.application_hook = NULL,
.safeoutput_override = NULL,
.pre_object_download_hook = NULL,
.post_object_download_hook = NULL,
.rxpdo_override = NULL,
.txpdo_override = NULL,
.esc_hw_interrupt_enable = NULL,
.esc_hw_interrupt_disable = NULL,
.esc_hw_eep_handler = NULL,
.esc_check_dc_handler = dc_checker,
};
void setup(void) {
Serial1.begin(115200);
for (int i = 0; i < sizeof(inputPin); i++)
pinMode(inputPin[i], INPUT_PULLDOWN);
for (int i = 0; i < sizeof(outputPin); i++) {
pinMode(outputPin[i], OUTPUT);
digitalWrite(outputPin[i], LOW);
}
// Debug leds
pinMode(PB4, OUTPUT);
pinMode(PB5, OUTPUT);
pinMode(PB6, OUTPUT);
pinMode(PB7, OUTPUT);
digitalWrite(PB4, LOW);
digitalWrite(PB5, LOW);
digitalWrite(PB6, LOW);
digitalWrite(PB7, LOW);
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
#ifdef ECAT
ecat_slv_init(&config);
#endif
#if 0 // Uncomment for commissioning tests
// #define only one of the below
#define ADS1xxx
#undef ADC_MCP3221
digitalWrite(outputPin[0], HIGH); // All four output leds should go high
digitalWrite(outputPin[1], HIGH);
digitalWrite(outputPin[2], HIGH);
digitalWrite(outputPin[3], HIGH);
#ifdef ADC_MCP3221
mcp3221 = new MyMCP3221(0x48, &Wire2);
#endif
#ifdef ADS1xxx
ads1014_1 = new ADS1014(0x48, &Wire2);
ads1014_reset(ads1014_1);
#endif
while (1) // Search I2C bus for devices
{
int nDevices = 0;
for (int i2caddr = 1; i2caddr < 127; i2caddr++)
{
Wire2.beginTransmission(i2caddr);
int stat = Wire2.endTransmission();
if (stat == 0)
{
Serial1.printf("I2C device found at address 0x%02x\n", i2caddr);
nDevices++;
}
}
if (!nDevices)
Serial1.printf("No devices\n");
#ifdef ADC_MCP3221
Serial1.printf("I2C status=%d rawdata=%d ", mcp3221->ping(), mcp3221->getData());
#endif
#ifdef ADS1xxx
// else Serial1.printf("I2C status=%d rawdata=%d pin0=%d pin1=%d\n", ads1014.isConnected() ? 0 : -1, ads1014.readADC_Differential_0_1(), ads1014.readADC(0), ads1014.readADC(1));
// Serial1.println(ads1014.toVoltage(ads1014.readADC_Differential_0_1()), 5);
for (int i = 0; i < 10; i++)
Serial1.println(ads1014_1->getValue());
int dummy = 0;
uint32_t then = micros();
for (int i = 0; i < 1000; i++)
dummy += ads1014_1->getValue();
uint32_t now = micros();
Serial1.printf("1000 I2C readings take %d microseconds\n", now - then);
Serial1.println(ads1014_1->toVoltage(ads1014_1->getValue()), 4);
#endif
for (int i = 0; i < 12; i++)
Serial1.printf("%u", digitalRead(inputPin[i]));
Serial1.println();
delay(1000);
}
#endif
}
void loop(void) {
#ifdef ECAT
ecat_slv();
#endif
}
// Setup of DC
uint16_t dc_checker(void) {
// Indicate we run DC
ESCvar.dcsync = 1;
return 0;
}
void handleVoltageReader(float scale_in, float offset, float &outVoltage,
int32_t &outRaw, float &oldVoltage, float &oldRaw,
uint8_t devType, int8_t &old_devType,
uint8_t &readStat, uint32_t &outStatus, ADS1014 *&ads,
MyMCP3221 *&mcp, uint8_t I2C_address,
uint32_t &I2C_restarts) {
float scale = scale_in;
if (scale == 0.0)
scale = 1.0;
int stat = 1, data0;
switch (devType) {
case 0: // Not configured.
outStatus = 0;
stat = data0 = 0;
break;
case MCP3221_TYPE:
if (old_devType != devType) // Initilize and make ready
{
if (ads) {
delete ads;
ads = 0;
}
if (mcp) {
delete mcp;
mcp = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
mcp = new MyMCP3221(I2C_address, &Wire2);
old_devType = mcp ? MCP3221_TYPE : -1;
}
data0 = mcp->getData();
stat = mcp->ping();
break;
case ADS1014_TYPE:
if (old_devType != devType) // Initilize and make ready
{
if (ads) {
delete ads;
ads = 0;
}
if (mcp) {
delete mcp;
mcp = 0;
}
old_devType = 0;
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
ads = new ADS1014(I2C_address, &Wire2);
if (ads != nullptr) {
ads1014_reset(ads);
old_devType = ADS1014_TYPE;
}
}
if (ads != nullptr) {
data0 = ads->getValue();
stat = ads->isConnected() == 1 ? 0 : 1;
}
break;
default: // Not supported
break;
}
if (stat == 0) { // Read good value
outVoltage = scale * data0 + offset; //
outRaw = data0; // Raw voltage, read by ADC
oldVoltage = outVoltage;
oldRaw = data0;
} else { // Didn't read a good value. Return a hopefully useful value and
// restart
// the I2C bus
outVoltage = oldVoltage; // Use value from previous call
outRaw = oldRaw;
// Reset wire here
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
I2C_restarts++;
if (devType == ADS1014_TYPE && ads != nullptr)
ads1014_reset(ads);
// mcp3221 has no reset, reset the I2C bus is the best we can do
}
readStat = stat;
outStatus =
I2C_restarts + (stat << 28); // Put status as bits 28-31, the lower are
// number of restarts (restart attempts)
}
void lowpassFilter(float &oldLowPassGain,
uint32_t &oldLowpassFilterPoleFrequency,
float &oldLowPassFilteredVoltage,
uint32_t LowpassFilterPoleFrequency,
float LowPassFilterThresholdVoltage, float inVoltage,
float &outFilteredVoltage) {
// Low pass filter. See lowpass in linuxcnc doc
float gain = oldLowPassGain;
if (oldLowpassFilterPoleFrequency != LowpassFilterPoleFrequency) {
gain = 1 - expf(-2.0 * M_PI * LowpassFilterPoleFrequency *
0.001 /*1.0e-9 * ESC_SYNC0cycletime()*/);
oldLowPassGain = gain;
oldLowpassFilterPoleFrequency = LowpassFilterPoleFrequency;
}
if (inVoltage < LowPassFilterThresholdVoltage)
outFilteredVoltage = inVoltage; // Just forward
else
outFilteredVoltage = oldLowPassFilteredVoltage +
(inVoltage - oldLowPassFilteredVoltage) * gain;
oldLowPassFilteredVoltage = outFilteredVoltage;
}
#define N_VOLTAGES 3
void OhmicSensing::handle(uint8_t voltageState, float inVoltage,
float limitVoltage, float voltageDropLimit,
uint32_t setupTime, uint8_t enabled,
uint8_t &sensed) {
sensed = 0;
uint64_t dTime;
Obj.Out_Unit1.RawData = ohmicState;
if (enabled && voltageState == 0) {
if (ohmicState == OHMIC_IDLE && inVoltage > limitVoltage) {
ohmicState = OHMIC_SETUP;
startTime = longTime.extendTime(micros());
while (!voltages.empty())
voltages.pop(); // Remove history
return;
}
if (ohmicState == OHMIC_SETUP) {
dTime = longTime.extendTime(micros()) - startTime;
if (dTime > setupTime * 1000) {
ohmicState = OHMIC_PROBE;
startTime = longTime.extendTime(micros());
oldVoltage = 0.0;
refVoltage = inVoltage; // RefVoltage = voltage at end of setup
return;
}
}
if (ohmicState == OHMIC_PROBE) {
dTime = longTime.extendTime(micros()) - startTime;
voltages.push(inVoltage);
while (voltages.size() > N_VOLTAGES)
voltages.pop(); // Only N_VOLTAGES
if (dTime > 30000000) { // Go to IDLE after 30 seconds
ohmicState = OHMIC_IDLE;
return;
}
byte c1 = (inVoltage <= limitVoltage) ? 1 : 0; // Below starting threshold
byte c2 = (fabs(voltageDropLimit) > 1e-3 &&
refVoltage - inVoltage >= voltageDropLimit)
? 2
: 0; // Delta below refVoltage
byte c3 = (fabs(voltageDropLimit) > 1e-3 && // Immediate drop
oldVoltage - inVoltage >= voltageDropLimit)
? 4
: 0;
byte c4 = (fabs(voltageDropLimit) > 1e-3 && // Drop over 3 cycles
voltages.front() - voltages.back() > voltageDropLimit)
? 8
: 0;
Obj.Out_Unit2.RawData = c1 + c2 + c3 + c4;
if (c1 + c2 + c3 + c4 > 0) {
sensed = 1;
}
oldVoltage = inVoltage;
return;
}
} else {
ohmicState = OHMIC_IDLE;
}
}