356 lines
11 KiB
C++
Executable File
356 lines
11 KiB
C++
Executable File
#include <Arduino.h>
|
|
#include <stdio.h>
|
|
extern "C"
|
|
{
|
|
#include "ecat_slv.h"
|
|
#include "utypes.h"
|
|
};
|
|
_Objects Obj;
|
|
|
|
HardwareSerial Serial1(PA10, PA9);
|
|
|
|
volatile uint16_t ALEventIRQ; // ALEvent that caused the interrupt
|
|
HardwareTimer *baseTimer; // The base period timer
|
|
HardwareTimer *syncTimer; // The timer that syncs "with linuxcnc cycle"
|
|
uint32_t sync0CycleTime; // nanosecs, often 1000000 ( 1 ms )
|
|
|
|
#include "MyEncoder.h"
|
|
volatile uint16_t encCnt = 0;
|
|
void indexPulseEncoderCB1(void);
|
|
MyEncoder Encoder1(TIM2, PA2, indexPulseEncoderCB1);
|
|
void indexPulseEncoderCB1(void)
|
|
{
|
|
encCnt++;
|
|
Encoder1.indexPulse();
|
|
}
|
|
// #include <RunningAverage.h>
|
|
// RunningAverage irqServeDelays(1000); // To get the max delay of the irq serve time over the last second
|
|
CircularBuffer<uint16_t, 1000> irqServeDelays;
|
|
|
|
#include "StepGen3.h"
|
|
StepGen3 *Step = 0;
|
|
|
|
#include "extend32to64.h"
|
|
|
|
volatile uint64_t irqTime = 0, irqCnt = 0;
|
|
extend32to64 longTime;
|
|
|
|
void setFrequencyAdjustedMicrosSeconds(HardwareTimer *timer, uint32_t usecs);
|
|
|
|
void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation
|
|
{
|
|
Encoder1.setLatch(Obj.IndexLatchEnable);
|
|
Encoder1.setScale(2000);
|
|
}
|
|
|
|
volatile uint16_t basePeriodCnt;
|
|
volatile uint64_t makePulsesCnt = 0, prevMakePulsesCnt = 0;
|
|
volatile uint16_t deltaMakePulsesCnt;
|
|
|
|
volatile double posCmd1, posCmd2;
|
|
double oldPosCmd1, oldPosCmd2;
|
|
double deltaPosCmd1, deltaPosCmd2;
|
|
|
|
void syncWithLCNC()
|
|
{
|
|
syncTimer->pause();
|
|
baseTimer->pause();
|
|
deltaMakePulsesCnt = makePulsesCnt - prevMakePulsesCnt;
|
|
prevMakePulsesCnt = makePulsesCnt;
|
|
Step->updateStepGen(posCmd1, posCmd2, sync0CycleTime); // Update positions
|
|
Step->makeAllPulses(); // Make first step right here
|
|
basePeriodCnt = sync0CycleTime / BASE_PERIOD; //
|
|
baseTimer->refresh(); //
|
|
baseTimer->resume(); // Make the other steps in ISR
|
|
}
|
|
|
|
void basePeriodCB(void)
|
|
{
|
|
if (--basePeriodCnt > 0) // Stop
|
|
Step->makeAllPulses();
|
|
else
|
|
baseTimer->pause();
|
|
}
|
|
|
|
int32_t delayT;
|
|
uint16_t thisCycleTime; // In usecs
|
|
int16_t maxIrqServeTime = 0;
|
|
uint64_t oldIrqTime = 0;
|
|
uint16_t nLoops;
|
|
uint16_t failedSM2s = 0;
|
|
uint16_t totalFailedSM2s = 0;
|
|
uint16_t nLoopsAboveNorm = 0;
|
|
|
|
void handleStepper(void)
|
|
{
|
|
if (oldIrqTime != 0) // See if there is a delay in data, normally it *should* be nLoops=1, but sometimes it is more
|
|
{
|
|
thisCycleTime = irqTime - oldIrqTime;
|
|
nLoops = round(float(thisCycleTime) / float(sync0CycleTime / 1000));
|
|
nLoopsAboveNorm += nLoops - 1;
|
|
}
|
|
oldIrqTime = irqTime;
|
|
|
|
uint32_t diffT = longTime.extendTime(micros()) - irqTime; // Time from interrupt was received by isr
|
|
irqServeDelays.push(diffT);
|
|
if (irqServeDelays.isFull()) // Do max calcs, just waiting a second
|
|
{
|
|
uint16_t maxInBuffer = 0;
|
|
using index_t = decltype(irqServeDelays)::index_t;
|
|
for (index_t i = 0; i < irqServeDelays.size(); i++)
|
|
{
|
|
if (maxInBuffer < irqServeDelays[i])
|
|
maxInBuffer = irqServeDelays[i];
|
|
}
|
|
if (maxIrqServeTime > maxInBuffer) // Reduce by one, slowly eating up excess time
|
|
maxIrqServeTime--;
|
|
if (maxIrqServeTime < maxInBuffer)
|
|
maxIrqServeTime = maxInBuffer;
|
|
}
|
|
if (ALEventIRQ & ESCREG_ALEVENT_SM2)
|
|
{ // The normal case, position update every cycle
|
|
posCmd1 = Obj.CommandedPosition1; // The position update
|
|
posCmd2 = Obj.CommandedPosition2;
|
|
deltaPosCmd1 = posCmd1 - oldPosCmd1; // Needed for extrapolation in the other case
|
|
deltaPosCmd2 = posCmd2 - oldPosCmd2;
|
|
failedSM2s = 0;
|
|
}
|
|
else
|
|
{ // Not normal, we didn't get a position update. Extrapolate from previous updates
|
|
if (failedSM2s++ < 100) // Do max 10 such extrapolations, should be plenty
|
|
{ //
|
|
posCmd1 += deltaPosCmd1; // Continue with the same speed
|
|
posCmd2 += deltaPosCmd2;
|
|
}
|
|
totalFailedSM2s++;
|
|
}
|
|
oldPosCmd1 = posCmd1;
|
|
oldPosCmd2 = posCmd2;
|
|
|
|
// Obj.ActualPosition1 = Obj.CommandedPosition1;
|
|
// Obj.ActualPosition2 = Obj.CommandedPosition2;
|
|
|
|
Step->stepgen_array[0].pos_scale = -Obj.StepsPerMM1;
|
|
Step->stepgen_array[1].pos_scale = -Obj.StepsPerMM2;
|
|
|
|
Obj.ActualPosition1 = Step->stepgen_array[0].pos_fb;
|
|
Obj.ActualPosition2 = Step->stepgen_array[1].pos_fb;
|
|
|
|
delayT = maxIrqServeTime - diffT; // Add 10 as some safety margin
|
|
if (delayT > 0 && delayT < 900)
|
|
{
|
|
syncTimer->setOverflow(delayT, MICROSEC_FORMAT); // Work in flawed units, its ok
|
|
syncTimer->refresh();
|
|
syncTimer->resume();
|
|
}
|
|
else
|
|
{
|
|
syncWithLCNC();
|
|
}
|
|
}
|
|
|
|
float_t oldCommandedPosition = 0;
|
|
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
|
|
{
|
|
Obj.IndexStatus = Encoder1.indexHappened();
|
|
Obj.EncPos = Encoder1.currentPos();
|
|
Obj.EncFrequency = Encoder1.frequency(longTime.extendTime(micros()));
|
|
Obj.IndexByte = Encoder1.getIndexState();
|
|
|
|
Obj.DiffT = nLoops;
|
|
Obj.D1 = 1000 * deltaPosCmd2; // abs(1000 * (ap2 - Obj.CommandedPosition2)); // Step2.actPos();
|
|
Obj.D2 = totalFailedSM2s; // Step->stepgen_array[1].pos_fb; // Step->stepgen_array[1].rawcount % INT16_MAX; // Step->stepgen_array[1].freq;
|
|
Obj.D3 = 1000 * Obj.CommandedPosition2; // Step->stepgen_array[1].freq;
|
|
Obj.D4 = 1000 * posCmd2; // Step->stepgen_array[1].rawcount % UINT16_MAX;
|
|
oldCommandedPosition = Obj.CommandedPosition2;
|
|
}
|
|
|
|
void ESC_interrupt_enable(uint32_t mask);
|
|
void ESC_interrupt_disable(uint32_t mask);
|
|
uint16_t dc_checker(void);
|
|
void sync0Handler(void);
|
|
|
|
static esc_cfg_t config =
|
|
{
|
|
.user_arg = NULL,
|
|
.use_interrupt = 1,
|
|
.watchdog_cnt = 150,
|
|
.set_defaults_hook = NULL,
|
|
.pre_state_change_hook = NULL,
|
|
.post_state_change_hook = NULL,
|
|
.application_hook = handleStepper,
|
|
.safeoutput_override = NULL,
|
|
.pre_object_download_hook = NULL,
|
|
.post_object_download_hook = NULL,
|
|
.rxpdo_override = NULL,
|
|
.txpdo_override = NULL,
|
|
.esc_hw_interrupt_enable = ESC_interrupt_enable,
|
|
.esc_hw_interrupt_disable = ESC_interrupt_disable,
|
|
.esc_hw_eep_handler = NULL,
|
|
.esc_check_dc_handler = dc_checker,
|
|
};
|
|
|
|
void measureCrystalFrequency(void);
|
|
|
|
volatile byte serveIRQ = 0;
|
|
|
|
void setup(void)
|
|
{
|
|
Serial1.begin(115200);
|
|
#if 0
|
|
measureCrystalFrequency(); // Calibrate crystal frequency
|
|
#endif
|
|
Step = new StepGen3;
|
|
|
|
encoder_config(); // Needed by encoder, probably breaks some timers.
|
|
ecat_slv_init(&config);
|
|
|
|
pinMode(PA11, OUTPUT); // Step X
|
|
pinMode(PA12, OUTPUT); // Dir X
|
|
pinMode(PC9, OUTPUT); // Step Z
|
|
pinMode(PC10, OUTPUT); // Dir Z
|
|
|
|
baseTimer = new HardwareTimer(TIM11); // The base period timer
|
|
setFrequencyAdjustedMicrosSeconds(baseTimer, BASE_PERIOD / 1000);
|
|
// baseTimer->setOverflow(BASE_PERIOD / 1000, MICROSEC_FORMAT); // Or the line above, This one is uncalibrated
|
|
baseTimer->attachInterrupt(basePeriodCB);
|
|
|
|
syncTimer = new HardwareTimer(TIM3); // The Linuxcnc servo period sync timer
|
|
syncTimer->attachInterrupt(syncWithLCNC);
|
|
}
|
|
|
|
void loop(void)
|
|
{
|
|
uint64_t dTime;
|
|
if (serveIRQ)
|
|
{
|
|
DIG_process(ALEventIRQ, DIG_PROCESS_WD_FLAG | DIG_PROCESS_OUTPUTS_FLAG |
|
|
DIG_PROCESS_APP_HOOK_FLAG | DIG_PROCESS_INPUTS_FLAG);
|
|
serveIRQ = 0;
|
|
ESCvar.PrevTime = ESCvar.Time;
|
|
ecat_slv_poll();
|
|
}
|
|
dTime = longTime.extendTime(micros()) - irqTime;
|
|
if (dTime > 5000) // Don't run ecat_slv_poll when expecting to serve interrupt
|
|
ecat_slv_poll();
|
|
}
|
|
|
|
void sync0Handler(void)
|
|
{
|
|
ALEventIRQ = ESC_ALeventread();
|
|
// if (ALEventIRQ & ESCREG_ALEVENT_SM2)
|
|
{
|
|
irqTime = longTime.extendTime(micros());
|
|
serveIRQ = 1;
|
|
}
|
|
irqCnt++; // debug output
|
|
}
|
|
|
|
// Enable SM2 interrupts
|
|
void ESC_interrupt_enable(uint32_t mask)
|
|
{
|
|
// Enable interrupt for SYNC0 or SM2 or SM3
|
|
// uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
|
|
uint32_t user_int_mask = ESCREG_ALEVENT_SM2; // Only SM2
|
|
if (mask & user_int_mask)
|
|
{
|
|
ESC_ALeventmaskwrite(ESC_ALeventmaskread() | (mask & user_int_mask));
|
|
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM3));
|
|
attachInterrupt(digitalPinToInterrupt(PC3), sync0Handler, RISING);
|
|
|
|
// Set LAN9252 interrupt pin driver as push-pull active high
|
|
uint32_t bits = 0x00000111;
|
|
ESC_write(0x54, &bits, 4);
|
|
|
|
// Enable LAN9252 interrupt
|
|
bits = 0x00000001;
|
|
ESC_write(0x5c, &bits, 4);
|
|
}
|
|
}
|
|
|
|
// Disable SM2 interrupts
|
|
void ESC_interrupt_disable(uint32_t mask)
|
|
{
|
|
// Enable interrupt for SYNC0 or SM2 or SM3
|
|
// uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
|
|
uint32_t user_int_mask = ESCREG_ALEVENT_SM2;
|
|
|
|
if (mask & user_int_mask)
|
|
{
|
|
// Disable interrupt from SYNC0
|
|
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(mask & user_int_mask));
|
|
detachInterrupt(digitalPinToInterrupt(PC3));
|
|
// Disable LAN9252 interrupt
|
|
uint32_t bits = 0x00000000;
|
|
ESC_write(0x5c, &bits, 4);
|
|
}
|
|
}
|
|
|
|
extern "C" uint32_t ESC_SYNC0cycletime(void);
|
|
|
|
// Setup of DC
|
|
uint16_t dc_checker(void)
|
|
{
|
|
// Indicate we run DC
|
|
ESCvar.dcsync = 1;
|
|
sync0CycleTime = ESC_SYNC0cycletime(); // nanosecs
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Code to calibrate the crystal.
|
|
//
|
|
|
|
#include <HardwareTimer.h>
|
|
HardwareTimer *timer;
|
|
volatile uint32_t cnt;
|
|
|
|
void CB(void)
|
|
{
|
|
if (cnt-- == 0)
|
|
{
|
|
timer->pause();
|
|
}
|
|
}
|
|
|
|
void setFrequencyAdjustedMicrosSeconds(HardwareTimer *timer, uint32_t usecs)
|
|
{
|
|
const uint16_t calibrated1000 = 1042; // <- This is the factor to adjust to make 1 sec = 1 sec
|
|
uint32_t period_cyc = (usecs * (timer->getTimerClkFreq() / 1000)) / calibrated1000; // Avoid overflow during math
|
|
uint32_t Prescalerfactor = (period_cyc / 0x10000) + 1;
|
|
uint32_t PeriodTicks = period_cyc / Prescalerfactor;
|
|
timer->setPrescaleFactor(Prescalerfactor);
|
|
timer->setOverflow(PeriodTicks, TICK_FORMAT);
|
|
// Serial1.printf("Period_cyc=%u Prescalefactor =%u ticks = %u\n", period_cyc, Prescalerfactor, PeriodTicks);
|
|
}
|
|
|
|
void measureCrystalFrequency(void)
|
|
{
|
|
timer = new HardwareTimer(TIM1);
|
|
Serial1.begin(115200);
|
|
delay(3000);
|
|
Serial1.printf("Clock freq = %u\n", timer->getTimerClkFreq());
|
|
setFrequencyAdjustedMicrosSeconds(timer, 1000);
|
|
timer->refresh();
|
|
timer->attachInterrupt(CB);
|
|
cnt = 10000;
|
|
|
|
Serial1.printf("\n");
|
|
uint32_t startT = micros();
|
|
timer->resume();
|
|
|
|
while (cnt != 0)
|
|
;
|
|
|
|
uint32_t endT = micros();
|
|
uint32_t diffT = endT - startT;
|
|
Serial1.printf("\n");
|
|
Serial1.printf("diff = %u\n", diffT);
|
|
|
|
Serial1.printf("\n");
|
|
delay(10000);
|
|
Serial1.printf("\n");
|
|
|
|
exit(0);
|
|
}
|