Files
MyOwnEtherCATDevice/Cards/EaserCAT-2000/Firmware/src/MyEncoder.cpp
2024-11-20 11:18:13 +01:00

100 lines
2.7 KiB
C++
Executable File

#include "MyENcoder.h"
MyEncoder::MyEncoder(TIM_TypeDef *_tim_base, uint8_t _indexPin, void irq(void))
{
tim_base = _tim_base;
indexPin = _indexPin;
attachInterrupt(digitalPinToInterrupt(indexPin), irq, RISING); // When Index triggered
EncoderInit.SetCount(0);
}
#define ONE_PERIOD 65536
#define HALF_PERIOD 32768
int64_t MyEncoder::unwrapEncoder(uint16_t in)
{
int32_t c32 = (int32_t)in - HALF_PERIOD; // remove half period to determine (+/-) sign of the wrap
int32_t dif = (c32 - previousEncoderCounterValue); // core concept: prev + (current - prev) = current
// wrap difference from -HALF_PERIOD to HALF_PERIOD. modulo prevents differences after the wrap from having an incorrect result
int32_t mod_dif = ((dif + HALF_PERIOD) % ONE_PERIOD) - HALF_PERIOD;
if (dif < -HALF_PERIOD)
mod_dif += ONE_PERIOD; // account for mod of negative number behavior in C
int64_t unwrapped = previousEncoderCounterValue + mod_dif;
previousEncoderCounterValue = unwrapped; // load previous value
return unwrapped + HALF_PERIOD; // remove the shift we applied at the beginning, and return
}
void MyEncoder::indexPulse(void)
{
if (pleaseZeroTheCounter)
{
tim_base->CNT = 0;
indexPulseFired = 1;
Pos.clear();
TDelta.clear();
pleaseZeroTheCounter = 0;
}
}
uint8_t MyEncoder::indexHappened()
{
if (indexPulseFired)
{
indexPulseFired = 0;
previousEncoderCounterValue = 0;
return 1;
}
return 0;
}
double MyEncoder::currentPos()
{
curPos = unwrapEncoder(tim_base->CNT) * PosScaleRes;
return curPos;
}
double MyEncoder::frequency(uint64_t time)
{
double diffT = 0;
double diffPos = 0;
double frequency;
TDelta.push(time); // Running average over the length of the circular buffer
Pos.push(curPos);
if (Pos.size() == RINGBUFFERLEN)
{
diffT = 1.0e-6 * (TDelta.last() - TDelta.first()); // Time is in microseconds
diffPos = fabs(Pos.last() - Pos.first());
frequency = diffPos / diffT;
oldFrequency = frequency;
return frequency; // Revolutions per second
}
else
return oldFrequency;
}
uint8_t MyEncoder::getIndexState()
{
return digitalRead(indexPin);
}
void MyEncoder::setScale(double scale)
{
if (CurPosScale != scale && scale != 0)
{
CurPosScale = scale;
PosScaleRes = 1.0 / double(scale);
}
}
void MyEncoder::setLatch(uint8_t latchEnable)
{
if (latchEnable && !oldLatchCEnable) // Should only happen first time IndexCEnable is set
{
pleaseZeroTheCounter = 1;
}
oldLatchCEnable = latchEnable;
}