It seems to work now, with reload in the timer_CB. Avoid micros()

This commit is contained in:
Hakan Bastedt
2024-01-09 22:20:20 +01:00
parent 0b9ce37200
commit 9adae08b98

View File

@@ -36,7 +36,7 @@ volatile uint32_t stepCount = 0, stepPulses = 0;
volatile double_t actualPosition = 0; volatile double_t actualPosition = 0;
volatile double_t requestedPosition, requestedVelocity; volatile double_t requestedPosition, requestedVelocity;
uint32_t sync0CycleTime = 0; // nanoseconds uint32_t sync0CycleTime = 0; // microseconds
void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation
{ {
@@ -180,72 +180,82 @@ volatile int32_t timerStepPositionAtEnd = 0;
void handleStepper(void) void handleStepper(void)
{ {
int32_t pulsesAtEndOfCycle = 100 * requestedPosition; // From Turner.hal X:5000 Z:2000 ps/mm const uint32_t steps_per_mm = 1000;
makePulses(/*sync0CycleTime / 1000*/ 1200, pulsesAtEndOfCycle); // Make the pulses using hardware timer actualPosition = timerStepPosition / double(steps_per_mm);
actualPosition = requestedPosition; double diffPosition = requestedPosition - actualPosition;
if (abs(diffPosition) * steps_per_mm > 10000)
{
requestedPosition = actualPosition + 10.0 * (diffPosition > 0 ? 1 : -1);
}
int32_t pulsesAtEndOfCycle = steps_per_mm * requestedPosition; // From Turner.hal X:5000 Z:2000 ps/mm
makePulses(sync0CycleTime, pulsesAtEndOfCycle); // Make the pulses using hardware timer
} }
volatile int32_t timerNewEndStepPosition = 0; volatile int32_t timerNewEndStepPosition = 0;
volatile uint64_t timerNewEndTime = 0; volatile uint32_t timerNewCycleTime = 0;
void makePulses(uint64_t cycleTime /* in usecs */, int32_t pulsesAtEnd /* end position*/) void makePulses(uint64_t cycleTime /* in usecs */, int32_t pulsesAtEnd /* end position*/)
{ {
if (1 /*!timerIsRunning*/) uint32_t now = micros();
if (timerIsRunning)
{
// Set variables, they will be picked up by the timer_CB and the timer is reloaded.
timerNewEndStepPosition = pulsesAtEnd;
timerNewCycleTime = cycleTime;
}
if (!timerIsRunning)
{ {
// Start the timer // Start the timer
int32_t steps = pulsesAtEnd - timerStepPositionAtEnd; // Pulses to go + or - int32_t steps = pulsesAtEnd - timerStepPositionAtEnd; // Pulses to go + or -
if (steps != 0) if (steps != 0)
{ {
if (abs(steps) * 1000000 / cycleTime > 100000) // 100 kHz is too much for driver, reduce
{
int32_t stepsMax = 100000 * cycleTime / 1000000;
steps = stepsMax * (steps > 0 ? 1 : -1);
pulsesAtEnd = timerStepPositionAtEnd + steps;
}
byte sgn = steps > 0 ? HIGH : LOW; byte sgn = steps > 0 ? HIGH : LOW;
digitalWrite(STEPPER_DIR_PIN, sgn); digitalWrite(STEPPER_DIR_PIN, sgn);
uint32_t freq = 1.4 * abs(steps) * 1000000 / cycleTime; double_t freqf = (abs(steps) * 1000000.0) / double(cycleTime);
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN); uint32_t freq = uint32_t(freqf);
// freq=1428;
MyTim->setOverflow(freq, HERTZ_FORMAT); MyTim->setOverflow(freq, HERTZ_FORMAT);
MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 % MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 %
timerStepDirection = steps > 0 ? 1 : -1; timerStepDirection = steps > 0 ? 1 : -1;
timerStepPositionAtEnd = pulsesAtEnd; // Current Position timerStepPositionAtEnd = pulsesAtEnd; // Current Position
timerIsRunning = 1; timerIsRunning = 1;
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
MyTim->resume(); MyTim->resume();
} }
} }
else // Timer is running, reload
{
// Set variables, they will be picked up by the timer_CB and the timer is reloaded.
timerNewEndStepPosition = pulsesAtEnd;
timerNewEndTime = micros() + cycleTime;
}
} }
void TimerStep_CB(void) void TimerStep_CB(void)
{ {
timerStepPosition += timerStepDirection; // The step that was just completed timerStepPosition += timerStepDirection; // The step that was just completed
if (timerNewEndTime != 0) // Are we going to reload? if (timerNewCycleTime != 0) // Are we going to reload?
{ {
// Input for reload is timerNewEndStepPosition and timerNewEndTime // Input for reload is timerNewEndStepPosition and timerNewEndTime
// The timer has current position and current time and from this // The timer has current position and current time and from this
// can set new frequency and new endtarget for steps // can set new frequency and new endtarget for steps
MyTim->pause(); MyTim->pause();
int32_t steps = timerNewEndStepPosition - timerStepPosition; int32_t steps = timerNewEndStepPosition - timerStepPosition;
uint64_t cycleTime = timerNewEndTime - micros(); if (steps != 0)
{
byte sgn = steps > 0 ? HIGH : LOW; byte sgn = steps > 0 ? HIGH : LOW;
digitalWrite(STEPPER_DIR_PIN, sgn); digitalWrite(STEPPER_DIR_PIN, sgn);
uint32_t freq = abs(steps) * 1000000 / cycleTime; double_t freqf = (abs(steps) * 1000000.0) / double(timerNewCycleTime);
uint32_t freq = uint32_t(freqf);
// freq=1428;
if (freq != 0)
{
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN); MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
// freq=1428;
MyTim->setOverflow(freq, HERTZ_FORMAT); MyTim->setOverflow(freq, HERTZ_FORMAT);
MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 % MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 %
timerStepDirection = steps > 0 ? 1 : -1; timerStepDirection = steps > 0 ? 1 : -1;
timerStepPositionAtEnd = timerNewEndStepPosition; timerStepPositionAtEnd = timerNewEndStepPosition;
timerNewEndStepPosition = 0; // Set to zero to not reload next time timerNewEndStepPosition = 0; // Set to zero to not reload next time
timerNewEndTime = 0; timerNewCycleTime = 0;
timerIsRunning = 1;
MyTim->resume(); MyTim->resume();
timerIsRunning = 1;
}
}
} }
if (timerStepPosition == timerStepPositionAtEnd) // Are we finished? if (timerStepPosition == timerStepPositionAtEnd) // Are we finished?
{ {
@@ -299,7 +309,7 @@ uint16_t dc_checker(void)
{ {
// Indicate we run DC // Indicate we run DC
ESCvar.dcsync = 0; ESCvar.dcsync = 0;
sync0CycleTime = ESC_SYNC0cycletime(); sync0CycleTime = ESC_SYNC0cycletime() / 1000; // nsec to usec
return 0; return 0;
} }
#define ONE_PERIOD 65536 #define ONE_PERIOD 65536