It seems to work now, with reload in the timer_CB. Avoid micros()
This commit is contained in:
@@ -36,7 +36,7 @@ volatile uint32_t stepCount = 0, stepPulses = 0;
|
||||
volatile double_t actualPosition = 0;
|
||||
volatile double_t requestedPosition, requestedVelocity;
|
||||
|
||||
uint32_t sync0CycleTime = 0; // nanoseconds
|
||||
uint32_t sync0CycleTime = 0; // microseconds
|
||||
|
||||
void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation
|
||||
{
|
||||
@@ -180,72 +180,82 @@ volatile int32_t timerStepPositionAtEnd = 0;
|
||||
|
||||
void handleStepper(void)
|
||||
{
|
||||
int32_t pulsesAtEndOfCycle = 100 * requestedPosition; // From Turner.hal X:5000 Z:2000 ps/mm
|
||||
makePulses(/*sync0CycleTime / 1000*/ 1200, pulsesAtEndOfCycle); // Make the pulses using hardware timer
|
||||
actualPosition = requestedPosition;
|
||||
const uint32_t steps_per_mm = 1000;
|
||||
actualPosition = timerStepPosition / double(steps_per_mm);
|
||||
double diffPosition = requestedPosition - actualPosition;
|
||||
if (abs(diffPosition) * steps_per_mm > 10000)
|
||||
{
|
||||
requestedPosition = actualPosition + 10.0 * (diffPosition > 0 ? 1 : -1);
|
||||
}
|
||||
int32_t pulsesAtEndOfCycle = steps_per_mm * requestedPosition; // From Turner.hal X:5000 Z:2000 ps/mm
|
||||
makePulses(sync0CycleTime, pulsesAtEndOfCycle); // Make the pulses using hardware timer
|
||||
}
|
||||
|
||||
volatile int32_t timerNewEndStepPosition = 0;
|
||||
volatile uint64_t timerNewEndTime = 0;
|
||||
volatile uint32_t timerNewCycleTime = 0;
|
||||
|
||||
void makePulses(uint64_t cycleTime /* in usecs */, int32_t pulsesAtEnd /* end position*/)
|
||||
{
|
||||
if (1 /*!timerIsRunning*/)
|
||||
uint32_t now = micros();
|
||||
if (timerIsRunning)
|
||||
{
|
||||
// Set variables, they will be picked up by the timer_CB and the timer is reloaded.
|
||||
timerNewEndStepPosition = pulsesAtEnd;
|
||||
timerNewCycleTime = cycleTime;
|
||||
}
|
||||
if (!timerIsRunning)
|
||||
{
|
||||
// Start the timer
|
||||
int32_t steps = pulsesAtEnd - timerStepPositionAtEnd; // Pulses to go + or -
|
||||
if (steps != 0)
|
||||
{
|
||||
if (abs(steps) * 1000000 / cycleTime > 100000) // 100 kHz is too much for driver, reduce
|
||||
{
|
||||
int32_t stepsMax = 100000 * cycleTime / 1000000;
|
||||
steps = stepsMax * (steps > 0 ? 1 : -1);
|
||||
pulsesAtEnd = timerStepPositionAtEnd + steps;
|
||||
}
|
||||
byte sgn = steps > 0 ? HIGH : LOW;
|
||||
digitalWrite(STEPPER_DIR_PIN, sgn);
|
||||
uint32_t freq = 1.4 * abs(steps) * 1000000 / cycleTime;
|
||||
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
|
||||
double_t freqf = (abs(steps) * 1000000.0) / double(cycleTime);
|
||||
uint32_t freq = uint32_t(freqf);
|
||||
// freq=1428;
|
||||
MyTim->setOverflow(freq, HERTZ_FORMAT);
|
||||
MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 %
|
||||
timerStepDirection = steps > 0 ? 1 : -1;
|
||||
timerStepPositionAtEnd = pulsesAtEnd; // Current Position
|
||||
timerIsRunning = 1;
|
||||
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
|
||||
MyTim->resume();
|
||||
}
|
||||
}
|
||||
else // Timer is running, reload
|
||||
{
|
||||
// Set variables, they will be picked up by the timer_CB and the timer is reloaded.
|
||||
|
||||
timerNewEndStepPosition = pulsesAtEnd;
|
||||
timerNewEndTime = micros() + cycleTime;
|
||||
}
|
||||
}
|
||||
|
||||
void TimerStep_CB(void)
|
||||
{
|
||||
timerStepPosition += timerStepDirection; // The step that was just completed
|
||||
if (timerNewEndTime != 0) // Are we going to reload?
|
||||
if (timerNewCycleTime != 0) // Are we going to reload?
|
||||
{
|
||||
// Input for reload is timerNewEndStepPosition and timerNewEndTime
|
||||
// The timer has current position and current time and from this
|
||||
// can set new frequency and new endtarget for steps
|
||||
MyTim->pause();
|
||||
int32_t steps = timerNewEndStepPosition - timerStepPosition;
|
||||
uint64_t cycleTime = timerNewEndTime - micros();
|
||||
byte sgn = steps > 0 ? HIGH : LOW;
|
||||
digitalWrite(STEPPER_DIR_PIN, sgn);
|
||||
uint32_t freq = abs(steps) * 1000000 / cycleTime;
|
||||
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
|
||||
MyTim->setOverflow(freq, HERTZ_FORMAT);
|
||||
MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 %
|
||||
timerStepDirection = steps > 0 ? 1 : -1;
|
||||
timerStepPositionAtEnd = timerNewEndStepPosition;
|
||||
timerNewEndStepPosition = 0; // Set to zero to not reload next time
|
||||
timerNewEndTime = 0;
|
||||
timerIsRunning = 1;
|
||||
MyTim->resume();
|
||||
if (steps != 0)
|
||||
{
|
||||
byte sgn = steps > 0 ? HIGH : LOW;
|
||||
digitalWrite(STEPPER_DIR_PIN, sgn);
|
||||
double_t freqf = (abs(steps) * 1000000.0) / double(timerNewCycleTime);
|
||||
uint32_t freq = uint32_t(freqf);
|
||||
// freq=1428;
|
||||
if (freq != 0)
|
||||
{
|
||||
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
|
||||
// freq=1428;
|
||||
MyTim->setOverflow(freq, HERTZ_FORMAT);
|
||||
MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 %
|
||||
timerStepDirection = steps > 0 ? 1 : -1;
|
||||
timerStepPositionAtEnd = timerNewEndStepPosition;
|
||||
timerNewEndStepPosition = 0; // Set to zero to not reload next time
|
||||
timerNewCycleTime = 0;
|
||||
MyTim->resume();
|
||||
timerIsRunning = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (timerStepPosition == timerStepPositionAtEnd) // Are we finished?
|
||||
{
|
||||
@@ -299,7 +309,7 @@ uint16_t dc_checker(void)
|
||||
{
|
||||
// Indicate we run DC
|
||||
ESCvar.dcsync = 0;
|
||||
sync0CycleTime = ESC_SYNC0cycletime();
|
||||
sync0CycleTime = ESC_SYNC0cycletime() / 1000; // nsec to usec
|
||||
return 0;
|
||||
}
|
||||
#define ONE_PERIOD 65536
|
||||
|
||||
Reference in New Issue
Block a user