Clear ALevents for DC_sync0 and SM3 might have solved the uneven pulse train. Looking better now.
This commit is contained in:
@@ -21,49 +21,52 @@ StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin,
|
||||
startTimer = new HardwareTimer(Timer2);
|
||||
startTimer->attachInterrupt(irq2);
|
||||
}
|
||||
|
||||
uint32_t cnt = 0;
|
||||
uint32_t StepGen2::handleStepper(void)
|
||||
{
|
||||
|
||||
if (!enabled)
|
||||
return updatePos(0);
|
||||
lcncCycleTime = StepGen2::sync0CycleTime;
|
||||
|
||||
lcncCycleTime = StepGen2::sync0CycleTime * 1.0e-6; // was usec, became sec
|
||||
commandedStepPosition = floor(commandedPosition * stepsPerMM); // Scale position to steps
|
||||
if (initialStepPosition == commandedStepPosition) // No movement
|
||||
return updatePos(1);
|
||||
|
||||
float approximateFrequency = fabs(initialStepPosition - commandedStepPosition) // We must take at least one step
|
||||
/ (float)lcncCycleTime; // from here on
|
||||
if (approximateFrequency > maxAllowedFrequency) // Stay on this position
|
||||
return 1;
|
||||
// digitalWrite(dirPin, cnt++ % 2);
|
||||
float approximateFrequency = fabs(initialStepPosition - commandedStepPosition) // We must take at least one step
|
||||
/ lcncCycleTime; // from here on
|
||||
// if (approximateFrequency > maxAllowedFrequency) // Stay on this position
|
||||
// return 1;
|
||||
|
||||
float kTRAJ = (commandedPosition - initialPosition) / float(lcncCycleTime); // Straight line equation
|
||||
float mTRAJ = initialPosition; // position = kTRAJ x time + mTRAJ
|
||||
// Operating on incoming positions (not steps)
|
||||
if (fabs(kTRAJ * lcncCycleTime * stepsPerMM) < 0.01) // Very flat slope
|
||||
{ //
|
||||
Tstart = 0.5 * lcncCycleTime; // Just take a step in the middle of the cycle
|
||||
frequency = 10000; // At some suitable frequency
|
||||
nSteps = kTRAJ > 0 ? 1 : -1; // Take only one step
|
||||
float kTRAJ = (commandedPosition - initialPosition) / lcncCycleTime; // Straight line equation
|
||||
float mTRAJ = initialPosition; // position = kTRAJ x time + mTRAJ
|
||||
// Operating on incoming positions (not steps)
|
||||
if (fabs(kTRAJ * lcncCycleTime * stepsPerMM) < 0.01) // Very flat slope
|
||||
{ //
|
||||
Tstartf = 0.5 * lcncCycleTime; // Just take a step in the middle of the cycle
|
||||
frequency = 10000; // At some suitable frequency
|
||||
nSteps = kTRAJ > 0 ? 1 : -1; // Take only one step
|
||||
}
|
||||
else // Regular step train, up or down
|
||||
{
|
||||
if (kTRAJ > 0)
|
||||
Tstart = (ceil(initialPosition * stepsPerMM) - mTRAJ) / kTRAJ;
|
||||
Tstartf = (ceil(initialPosition * stepsPerMM) / stepsPerMM - mTRAJ) / kTRAJ;
|
||||
else
|
||||
Tstart = (floor(initialPosition * stepsPerMM) - mTRAJ) / kTRAJ;
|
||||
frequency = kTRAJ * stepsPerMM;
|
||||
Tstartf = (floor(initialPosition * stepsPerMM) / stepsPerMM - mTRAJ) / kTRAJ;
|
||||
frequency = fabs(kTRAJ * stepsPerMM);
|
||||
nSteps = commandedStepPosition - initialStepPosition; // sign(nSteps) = direction.
|
||||
}
|
||||
updatePos(5);
|
||||
Tstartu = Tstartf * 1e6; // Was secs, now usecs
|
||||
|
||||
startTimer->setOverflow(Tstart + Tjitter, MICROSEC_FORMAT); // All handled by irqs
|
||||
startTimer->setOverflow(Tstartu + Tjitter, MICROSEC_FORMAT); // All handled by irqs
|
||||
startTimer->resume();
|
||||
return 1;
|
||||
}
|
||||
void StepGen2::startTimerCB()
|
||||
{
|
||||
startTimer->pause(); // Once is enough.
|
||||
digitalWrite(dirPin, nSteps > 0 ? 1 : -1);
|
||||
// digitalWrite(dirPin, nSteps > 0 ? 1 : -1);
|
||||
timerPulseSteps = abs(nSteps);
|
||||
pulseTimer->setMode(pulseTimerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
|
||||
pulseTimer->setOverflow(uint32_t(frequency), HERTZ_FORMAT);
|
||||
|
||||
Reference in New Issue
Block a user