Firmware for EaserCAT-6000 brought in

This commit is contained in:
Hakan Bastedt
2024-12-14 19:32:27 +01:00
parent 909685cf0e
commit 5f8c3ba5fc
38 changed files with 11355 additions and 0 deletions

View File

@@ -0,0 +1,18 @@
#include "extend32to64.h"
// Extend from 32-bit to 64-bit precision
int64_t extend32to64::extendTime(uint32_t in)
{
int64_t c64 = (int64_t)in - HALF_PERIOD; // remove half period to determine (+/-) sign of the wrap
int64_t dif = (c64 - previousTimeValue); // core concept: prev + (current - prev) = current
// wrap difference from -HALF_PERIOD to HALF_PERIOD. modulo prevents differences after the wrap from having an incorrect result
int64_t mod_dif = ((dif + HALF_PERIOD) % ONE_PERIOD) - HALF_PERIOD;
if (dif < int64_t(-HALF_PERIOD))
mod_dif += ONE_PERIOD; // account for mod of negative number behavior in C
int64_t unwrapped = previousTimeValue + mod_dif;
previousTimeValue = unwrapped; // load previous value
return unwrapped + HALF_PERIOD; // remove the shift we applied at the beginning, and return
}

View File

@@ -0,0 +1,237 @@
#include <Arduino.h>
#include <stdio.h>
extern "C"
{
#include "ecat_slv.h"
#include "utypes.h"
};
_Objects Obj;
#include "extend32to64.h"
extend32to64 longTime;
volatile uint64_t irqTime = 0;
HardwareSerial Serial1(PA10, PA9);
uint8_t inputPin[] = {PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PB15, PB14, PB13, PB12};
uint8_t outputPin[] = {PE10, PE9, PE8, PE7};
#include "HardwareTimer.h"
// NOTE This mod in the beginning of HardwareTimer.cpp for 32-bit precision
////// //#define MAX_RELOAD ((1 << 16) - 1) // Currently even 32b timers are used as 16b to have generic behavior
////// #define MAX_RELOAD 0xFFFFFFFF
#define THCAD_PIN PA0
// PA0 is connected to Timer 2, a 32-bit timer
uint32_t channel;
volatile uint32_t FrequencyMeasured, LastCapture = 0, CurrentCapture;
uint32_t input_freq = 0;
volatile uint32_t rolloverCompareCount = 0;
HardwareTimer *EncoderTimer;
void InputCapture_IT_callback(void);
void Rollover_IT_callback(void);
volatile uint16_t ALEventIRQ; // ALEvent that caused the interrupt
void cb_set_outputs(void) // Get Master outputs, slave inputs, first operation
{
// Update digital pins
for (int i = 0; i < sizeof(outputPin); i++)
{
digitalWrite(outputPin[i], Obj.Output[i]);
}
}
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
{
for (int i = 0; i < sizeof(inputPin); i++)
Obj.Input[i] = digitalRead(inputPin[i]);
Obj.Velocity = Obj.VelocityScale * FrequencyMeasured;
}
void ESC_interrupt_enable(uint32_t mask);
void ESC_interrupt_disable(uint32_t mask);
uint16_t dc_checker(void);
void sync0Handler(void);
static esc_cfg_t config =
{
.user_arg = NULL,
.use_interrupt = 1,
.watchdog_cnt = 150,
.set_defaults_hook = NULL,
.pre_state_change_hook = NULL,
.post_state_change_hook = NULL,
.application_hook = NULL,
.safeoutput_override = NULL,
.pre_object_download_hook = NULL,
.post_object_download_hook = NULL,
.rxpdo_override = NULL,
.txpdo_override = NULL,
.esc_hw_interrupt_enable = ESC_interrupt_enable,
.esc_hw_interrupt_disable = ESC_interrupt_disable,
.esc_hw_eep_handler = NULL,
.esc_check_dc_handler = dc_checker,
};
volatile byte serveIRQ = 0;
volatile uint32_t globalIRQ = 0;
void globalInt(void)
{
globalIRQ++;
}
void setup(void)
{
Serial1.begin(115200);
for (int i = 0; i < sizeof(inputPin); i++)
pinMode(inputPin[i], INPUT_PULLDOWN);
for (int i = 0; i < sizeof(outputPin); i++)
{
pinMode(outputPin[i], OUTPUT);
digitalWrite(outputPin[i], LOW);
}
// Automatically retrieve TIM instance and channel associated to pin
// This is used to be compatible with all STM32 series automatically.
TIM_TypeDef *Instance = (TIM_TypeDef *)pinmap_peripheral(digitalPinToPinName(THCAD_PIN), PinMap_PWM);
channel = STM_PIN_CHANNEL(pinmap_function(digitalPinToPinName(THCAD_PIN), PinMap_PWM));
EncoderTimer = new HardwareTimer(Instance);
// Configure rising edge detection to measure frequency
EncoderTimer->setMode(channel, TIMER_INPUT_CAPTURE_RISING, THCAD_PIN);
// With a PrescalerFactor = 1, the minimum frequency value to measure is : TIM counter clock / CCR MAX
// = (SystemCoreClock) / 65535
// Example on Nucleo_L476RG with systemClock at 80MHz, the minimum frequency is around 1,2 khz
// To reduce minimum frequency, it is possible to increase prescaler. But this is at a cost of precision.
// The maximum frequency depends on processing of the interruption and thus depend on board used
// Example on Nucleo_L476RG with systemClock at 80MHz the interruption processing is around 4,5 microseconds and thus Max frequency is around 220kHz
uint32_t PrescalerFactor = 1;
EncoderTimer->setPrescaleFactor(PrescalerFactor);
EncoderTimer->setOverflow(0xFFFFFFF0); // Max Period value to have the largest possible time to detect rising edge and avoid timer rollover
EncoderTimer->attachInterrupt(channel, InputCapture_IT_callback);
EncoderTimer->attachInterrupt(Rollover_IT_callback);
EncoderTimer->resume();
// Compute this scale factor only once
input_freq = EncoderTimer->getTimerClkFreq() / EncoderTimer->getPrescaleFactor();
ecat_slv_init(&config);
attachInterrupt(digitalPinToInterrupt(PC0), globalInt, RISING);
}
void loop(void)
{
#if 0 // Sync 0 mode
uint64_t dTime;
if (serveIRQ)
{
DIG_process(ALEventIRQ, DIG_PROCESS_WD_FLAG | DIG_PROCESS_OUTPUTS_FLAG |
DIG_PROCESS_APP_HOOK_FLAG | DIG_PROCESS_INPUTS_FLAG);
serveIRQ = 0;
ESCvar.PrevTime = ESCvar.Time;
ecat_slv_poll();
}
dTime = longTime.extendTime(micros()) - irqTime;
if (dTime > 5000) // Don't run ecat_slv_poll when expecting to serve interrupt
ecat_slv_poll();
#else // Freerun mode
ecat_slv();
#endif
}
void sync0Handler(void)
{
ALEventIRQ = ESC_ALeventread();
// if (ALEventIRQ & ESCREG_ALEVENT_SM2)
{
irqTime = longTime.extendTime(micros());
serveIRQ = 1;
}
}
// Enable SM2 interrupts
void ESC_interrupt_enable(uint32_t mask)
{
// Enable interrupt for SYNC0 or SM2 or SM3
uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
if (mask & user_int_mask)
{
ESC_ALeventmaskwrite(ESC_ALeventmaskread() | (mask & user_int_mask));
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM3));
attachInterrupt(digitalPinToInterrupt(PC3), sync0Handler, RISING);
// Set LAN9252 interrupt pin driver as push-pull active high
uint32_t bits = 0x00000111;
ESC_write(0x54, &bits, 4);
// Enable LAN9252 interrupt
bits = 0x00000001;
ESC_write(0x5c, &bits, 4);
}
}
// Disable SM2 interrupts
void ESC_interrupt_disable(uint32_t mask)
{
// Enable interrupt for SYNC0 or SM2 or SM3
// uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
uint32_t user_int_mask = ESCREG_ALEVENT_SM2;
if (mask & user_int_mask)
{
// Disable interrupt from SYNC0
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(mask & user_int_mask));
detachInterrupt(digitalPinToInterrupt(PC3));
// Disable LAN9252 interrupt
uint32_t bits = 0x00000000;
ESC_write(0x5c, &bits, 4);
}
}
extern "C" uint32_t ESC_SYNC0cycletime(void);
// Setup of DC
uint16_t dc_checker(void)
{
// Indicate we run DC
ESCvar.dcsync = 1;
return 0;
}
void InputCapture_IT_callback(void)
{
CurrentCapture = EncoderTimer->getCaptureCompare(channel);
/* frequency computation */
if (CurrentCapture > LastCapture)
{
FrequencyMeasured = input_freq / (CurrentCapture - LastCapture);
}
else if (CurrentCapture <= LastCapture)
{
/* 0xFFFFFFFF is max overflow value */
FrequencyMeasured = input_freq / (0xFFFFFFFF + CurrentCapture - LastCapture);
}
LastCapture = CurrentCapture;
rolloverCompareCount = 0;
}
/* In case of timer rollover, frequency is to low to be measured set value to 0
To reduce minimum frequency, it is possible to increase prescaler. But this is at a cost of precision. */
void Rollover_IT_callback(void)
{
rolloverCompareCount++;
if (rolloverCompareCount > 1)
{
FrequencyMeasured = 0;
}
}