Files
OTGateway/src/RegulatorTask.h
2023-09-21 22:51:14 +03:00

308 lines
8.8 KiB
C++

#include <Equitherm.h>
#include <GyverPID.h>
#include <PIDtuner.h>
Equitherm etRegulator;
GyverPID pidRegulator(0, 0, 0);
PIDtuner pidTuner;
class RegulatorTask: public LeanTask {
public:
RegulatorTask(bool _enabled = false, unsigned long _interval = 0): LeanTask(_enabled, _interval) {}
protected:
bool tunerInit = false;
byte tunerState = 0;
byte tunerRegulator = 0;
float prevHeatingTarget = 0;
float prevEtResult = 0;
float prevPidResult = 0;
void setup() {}
void loop() {
byte newTemp = vars.parameters.heatingSetpoint;
if (vars.states.emergency) {
if (settings.heating.turbo) {
settings.heating.turbo = false;
INFO("[REGULATOR] Turbo mode auto disabled");
}
newTemp = getEmergencyModeTemp();
} else {
if (vars.tuning.enable || tunerInit) {
if (settings.heating.turbo) {
settings.heating.turbo = false;
INFO("[REGULATOR] Turbo mode auto disabled");
}
newTemp = getTuningModeTemp();
if (newTemp == 0) {
vars.tuning.enable = false;
}
}
if (!vars.tuning.enable) {
if (settings.heating.turbo && (fabs(settings.heating.target - vars.temperatures.indoor) < 1 || (settings.equitherm.enable && settings.pid.enable))) {
settings.heating.turbo = false;
INFO("[REGULATOR] Turbo mode auto disabled");
}
newTemp = getNormalModeTemp();
}
}
// Ограничиваем, если до этого не ограничило
if (newTemp < vars.parameters.heatingMinTemp || newTemp > vars.parameters.heatingMaxTemp) {
newTemp = constrain(newTemp, vars.parameters.heatingMinTemp, vars.parameters.heatingMaxTemp);
}
if (abs(vars.parameters.heatingSetpoint - newTemp) + 0.0001 >= 1) {
vars.parameters.heatingSetpoint = newTemp;
}
}
byte getEmergencyModeTemp() {
float newTemp = 0;
// if use equitherm
if (settings.emergency.useEquitherm && settings.sensors.outdoor.type != 1) {
float etResult = getEquithermTemp(vars.parameters.heatingMinTemp, vars.parameters.heatingMaxTemp);
if (fabs(prevEtResult - etResult) + 0.0001 >= 0.5) {
prevEtResult = etResult;
newTemp += etResult;
INFO_F("[REGULATOR][EQUITHERM] New emergency result: %u (%f) \n", (int)round(etResult), etResult);
} else {
newTemp += prevEtResult;
}
} else {
// default temp, manual mode
newTemp = settings.emergency.target;
}
return round(newTemp);
}
byte getNormalModeTemp() {
float newTemp = 0;
if (fabs(prevHeatingTarget - settings.heating.target) > 0.0001) {
prevHeatingTarget = settings.heating.target;
INFO_F("[REGULATOR] New target: %f \n", settings.heating.target);
if (settings.equitherm.enable && settings.pid.enable) {
pidRegulator.integral = 0;
INFO_F("[REGULATOR][PID] Integral sum has been reset");
}
}
// if use equitherm
if (settings.equitherm.enable) {
float etResult = getEquithermTemp(vars.parameters.heatingMinTemp, vars.parameters.heatingMaxTemp);
if (fabs(prevEtResult - etResult) + 0.0001 >= 0.5) {
prevEtResult = etResult;
newTemp += etResult;
INFO_F("[REGULATOR][EQUITHERM] New result: %u (%f) \n", (int)round(etResult), etResult);
} else {
newTemp += prevEtResult;
}
}
// if use pid
if (settings.pid.enable && vars.states.heating) {
float pidResult = getPidTemp(
settings.equitherm.enable ? (settings.pid.maxTemp * -1) : settings.pid.minTemp,
settings.equitherm.enable ? settings.pid.maxTemp : settings.pid.maxTemp
);
if (fabs(prevPidResult - pidResult) + 0.0001 >= 0.5) {
prevPidResult = pidResult;
newTemp += pidResult;
INFO_F("[REGULATOR][PID] New result: %d (%f) \n", (int)round(pidResult), pidResult);
} else {
newTemp += prevPidResult;
}
} else if ( settings.pid.enable && !vars.states.heating && prevPidResult != 0 ) {
newTemp += prevPidResult;
}
// default temp, manual mode
if (!settings.equitherm.enable && !settings.pid.enable) {
newTemp = settings.heating.target;
}
newTemp = round(newTemp);
newTemp = constrain(newTemp, 0, 100);
return newTemp;
}
byte getTuningModeTemp() {
if (tunerInit && (!vars.tuning.enable || vars.tuning.regulator != tunerRegulator)) {
if (tunerRegulator == 0) {
pidTuner.reset();
}
tunerInit = false;
tunerRegulator = 0;
tunerState = 0;
INFO(F("[REGULATOR][TUNING] Stopped"));
}
if (!vars.tuning.enable) {
return 0;
}
if (vars.tuning.regulator == 0) {
// @TODO дописать
INFO(F("[REGULATOR][TUNING][EQUITHERM] Not implemented"));
return 0;
} else if (vars.tuning.regulator == 1) {
// PID tuner
float defaultTemp = settings.equitherm.enable
? getEquithermTemp(vars.parameters.heatingMinTemp, vars.parameters.heatingMaxTemp)
: settings.heating.target;
if (tunerInit && pidTuner.getState() == 3) {
INFO(F("[REGULATOR][TUNING][PID] Finished"));
pidTuner.debugText(&INFO_STREAM);
pidTuner.reset();
tunerInit = false;
tunerRegulator = 0;
tunerState = 0;
if (pidTuner.getAccuracy() < 90) {
WARN(F("[REGULATOR][TUNING][PID] Bad result, try again..."));
} else {
settings.pid.p_factor = pidTuner.getPID_p();
settings.pid.i_factor = pidTuner.getPID_i();
settings.pid.d_factor = pidTuner.getPID_d();
return 0;
}
}
if (!tunerInit) {
INFO(F("[REGULATOR][TUNING][PID] Start..."));
float step;
if (vars.temperatures.indoor - vars.temperatures.outdoor > 10) {
step = ceil(vars.parameters.heatingSetpoint / vars.temperatures.indoor * 2);
} else {
step = 5.0f;
}
float startTemp = step;
INFO_F("[REGULATOR][TUNING][PID] Started. Start value: %f, step: %f \n", startTemp, step);
pidTuner.setParameters(NORMAL, startTemp, step, 20 * 60 * 1000, 0.15, 60 * 1000, 10000);
tunerInit = true;
tunerRegulator = 1;
}
pidTuner.setInput(vars.temperatures.indoor);
pidTuner.compute();
if (tunerState > 0 && pidTuner.getState() != tunerState) {
INFO(F("[REGULATOR][TUNING][PID] Log:"));
pidTuner.debugText(&INFO_STREAM);
tunerState = pidTuner.getState();
}
return round(defaultTemp + pidTuner.getOutput());
} else {
return 0;
}
}
float getEquithermTemp(int minTemp, int maxTemp) {
if (vars.states.emergency) {
etRegulator.Kt = 0;
etRegulator.indoorTemp = 0;
etRegulator.outdoorTemp = vars.temperatures.outdoor;
} else if (settings.pid.enable) {
etRegulator.Kt = 0;
etRegulator.indoorTemp = round(vars.temperatures.indoor);
etRegulator.outdoorTemp = round(vars.temperatures.outdoor);
} else {
if (settings.heating.turbo) {
etRegulator.Kt = 10;
} else {
etRegulator.Kt = settings.equitherm.t_factor;
}
etRegulator.indoorTemp = vars.temperatures.indoor;
etRegulator.outdoorTemp = vars.temperatures.outdoor;
}
etRegulator.setLimits(minTemp, maxTemp);
etRegulator.Kn = settings.equitherm.n_factor;
// etRegulator.Kn = tuneEquithermN(etRegulator.Kn, vars.temperatures.indoor, settings.heating.target, 300, 1800, 0.01, 1);
etRegulator.Kk = settings.equitherm.k_factor;
etRegulator.targetTemp = vars.states.emergency ? settings.emergency.target : settings.heating.target;
return etRegulator.getResult();
}
float getPidTemp(int minTemp, int maxTemp) {
pidRegulator.Kp = settings.pid.p_factor;
pidRegulator.Ki = settings.pid.i_factor;
pidRegulator.Kd = settings.pid.d_factor;
pidRegulator.setLimits(minTemp, maxTemp);
pidRegulator.input = vars.temperatures.indoor;
pidRegulator.setpoint = settings.heating.target;
return pidRegulator.getResultNow();
}
float tuneEquithermN(float ratio, float currentTemp, float setTemp, unsigned int dirtyInterval = 60, unsigned int accurateInterval = 1800, float accurateStep = 0.01, float accurateStepAfter = 1) {
static uint32_t _prevIteration = millis();
if (abs(currentTemp - setTemp) < accurateStepAfter) {
if (millis() - _prevIteration < (accurateInterval * 1000)) {
return ratio;
}
if (currentTemp - setTemp > 0.1f) {
ratio -= accurateStep;
} else if (currentTemp - setTemp < -0.1f) {
ratio += accurateStep;
}
} else {
if (millis() - _prevIteration < (dirtyInterval * 1000)) {
return ratio;
}
ratio = ratio * (setTemp / currentTemp);
}
_prevIteration = millis();
return ratio;
}
};