15 Commits

Author SHA1 Message Date
Yurii
e751c3aba0 fix: decimation for Equitherm chart fixed; chartjs updated 2025-09-19 02:09:12 +03:00
Yurii
30b55f1946 Merge branch 'master' into new-equitherm 2025-09-19 00:45:07 +03:00
Yurii
5544f43162 Merge branch 'master' into new-equitherm 2025-06-30 02:42:33 +03:00
Yurii
06c2ddcf96 Merge branch 'master' into new-equitherm 2025-05-21 01:20:55 +03:00
Yurii
0bb05006f4 Merge branch 'master' into new-equitherm 2025-05-19 23:45:13 +03:00
Yurii
5046bc0e8f Merge branch 'master' into new-equitherm 2025-05-19 22:49:09 +03:00
P43YM
0d3adad446 refactor: added notes for equitherm parameters 2025-03-18 09:38:09 +03:00
Yurii
587678f184 Merge branch 'master' into new-equitherm 2025-03-06 04:52:12 +03:00
Yurii
72235286c0 chore: resolve conflicts 2025-03-06 04:50:02 +03:00
Yurii
ee868b22ce chore: remove unused files 2025-03-04 21:31:44 +03:00
Yurii
8046a7e13f refactor: cosmetic changes 2025-03-03 04:03:08 +03:00
Yurii
0ec1fc5f24 chore: fix typo 2025-03-03 02:26:09 +03:00
Yurii
061136b13e refactor: cosmetic changes (equitherm chart) 2025-03-03 02:05:33 +03:00
Yurii
3e61dabeab refactor: refactoring after #144 2025-03-02 22:44:53 +03:00
P43YM
e5f4281d4c feat: new equitherm algorithm and chart for it (#144) 2025-02-28 23:21:55 +03:00
34 changed files with 2243 additions and 1941 deletions

View File

@@ -72,7 +72,7 @@ All available information and instructions can be found in the wiki:
* [Leds on board](https://github.com/Laxilef/OTGateway/wiki/OT-adapters#leds-on-board) * [Leds on board](https://github.com/Laxilef/OTGateway/wiki/OT-adapters#leds-on-board)
## Gratitude ## Gratitude
* To the developers of the libraries used: [OpenTherm Library](https://github.com/ihormelnyk/opentherm_library), [ESP8266Scheduler](https://github.com/nrwiersma/ESP8266Scheduler), [ArduinoJson](https://github.com/bblanchon/ArduinoJson), [NimBLE-Arduino](https://github.com/h2zero/NimBLE-Arduino), [ArduinoMqttClient](https://github.com/arduino-libraries/ArduinoMqttClient), [ESPTelnet](https://github.com/LennartHennigs/ESPTelnet), [FileData](https://github.com/GyverLibs/FileData), [GyverPID](https://github.com/GyverLibs/GyverPID), [GyverBlinker](https://github.com/GyverLibs/GyverBlinker), [OneWireNg](https://github.com/pstolarz/OneWireNg) & [OneWire](https://github.com/PaulStoffregen/OneWire) * To the developers of the libraries used: [OpenTherm Library](https://github.com/ihormelnyk/opentherm_library), [ESP8266Scheduler](https://github.com/nrwiersma/ESP8266Scheduler), [ArduinoJson](https://github.com/bblanchon/ArduinoJson), [NimBLE-Arduino](https://github.com/h2zero/NimBLE-Arduino), [ArduinoMqttClient](https://github.com/arduino-libraries/ArduinoMqttClient), [ESPTelnet](https://github.com/LennartHennigs/ESPTelnet), [FileData](https://github.com/GyverLibs/FileData), [GyverPID](https://github.com/GyverLibs/GyverPID), [GyverBlinker](https://github.com/GyverLibs/GyverBlinker), [FileData](https://github.com/GyverLibs/FileData), [OneWireNg](https://github.com/pstolarz/OneWireNg) & [OneWire](https://github.com/PaulStoffregen/OneWire)
* To the [PlatformIO](https://platformio.org/) Team * To the [PlatformIO](https://platformio.org/) Team
* To the team and contributors of the [pioarduino](https://github.com/pioarduino/platform-espressif32) project * To the team and contributors of the [pioarduino](https://github.com/pioarduino/platform-espressif32) project
* To the [BrowserStack](https://www.browserstack.com/) team. This project is tested with BrowserStack. * To the [BrowserStack](https://www.browserstack.com/) team. This project is tested with BrowserStack.

View File

@@ -27,6 +27,9 @@ let paths = {
'src_data/scripts/i18n.min.js', 'src_data/scripts/i18n.min.js',
'src_data/scripts/lang.js', 'src_data/scripts/lang.js',
'src_data/scripts/utils.js' 'src_data/scripts/utils.js'
],
'chart.js': [
'src_data/scripts/chart.js'
] ]
} }
}, },

View File

@@ -4,8 +4,8 @@
class CustomOpenTherm : public OpenTherm { class CustomOpenTherm : public OpenTherm {
public: public:
typedef std::function<void(unsigned int)> DelayCallback; typedef std::function<void(unsigned int)> DelayCallback;
typedef std::function<void(unsigned long, uint8_t)> BeforeSendRequestCallback; typedef std::function<void(unsigned long, byte)> BeforeSendRequestCallback;
typedef std::function<void(unsigned long, unsigned long, OpenThermResponseStatus, uint8_t)> AfterSendRequestCallback; typedef std::function<void(unsigned long, unsigned long, OpenThermResponseStatus, byte)> AfterSendRequestCallback;
CustomOpenTherm(int inPin = 4, int outPin = 5, bool isSlave = false, bool alwaysReceive = false) : OpenTherm(inPin, outPin, isSlave, alwaysReceive) {} CustomOpenTherm(int inPin = 4, int outPin = 5, bool isSlave = false, bool alwaysReceive = false) : OpenTherm(inPin, outPin, isSlave, alwaysReceive) {}
~CustomOpenTherm() {} ~CustomOpenTherm() {}
@@ -106,14 +106,15 @@ public:
return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::RemoteRequest); return isValidResponse(response) && isValidResponseId(response, OpenThermMessageID::RemoteRequest);
} }
static bool isCh2Active(unsigned long response) { static bool isCh2Active(unsigned long response)
{
return response & 0x20; return response & 0x20;
} }
static bool isValidResponseId(unsigned long response, OpenThermMessageID id) { static bool isValidResponseId(unsigned long response, OpenThermMessageID id) {
uint8_t responseId = (response >> 16) & 0xFF; byte responseId = (response >> 16) & 0xFF;
return (uint8_t)id == responseId; return (byte)id == responseId;
} }
static uint8_t getResponseMessageTypeId(unsigned long response) { static uint8_t getResponseMessageTypeId(unsigned long response) {

View File

@@ -1,63 +0,0 @@
#include <Arduino.h>
#if defined(EQUITHERM_INTEGER)
// расчёты с целыми числами
typedef int datatype;
#else
// расчёты с float числами
typedef float datatype;
#endif
class Equitherm {
public:
datatype targetTemp = 0;
datatype indoorTemp = 0;
datatype outdoorTemp = 0;
float Kn = 0.0;
float Kk = 0.0;
float Kt = 0.0;
Equitherm() = default;
// kn, kk, kt
Equitherm(float new_kn, float new_kk, float new_kt) {
Kn = new_kn;
Kk = new_kk;
Kt = new_kt;
}
// лимит выходной величины
void setLimits(unsigned short min_output, unsigned short max_output) {
_minOut = min_output;
_maxOut = max_output;
}
// возвращает новое значение при вызове
datatype getResult() {
datatype output = getResultN() + getResultK() + getResultT();
output = constrain(output, _minOut, _maxOut); // ограничиваем выход
return output;
}
private:
unsigned short _minOut = 20, _maxOut = 90;
// температура контура отопления в зависимости от наружной температуры
datatype getResultN() {
float a = (-0.21 * Kn) - 0.06; // a = -0,21k — 0,06
float b = (6.04 * Kn) + 1.98; // b = 6,04k + 1,98
float c = (-5.06 * Kn) + 18.06; // с = -5,06k + 18,06
float x = (-0.2 * outdoorTemp) + 5; // x = -0.2*t1 + 5
return (a * x * x) + (b * x) + c; // Tn = ax2 + bx + c
}
// поправка на желаемую комнатную температуру
datatype getResultK() {
return (targetTemp - 20) * Kk;
}
// Расчет поправки (ошибки) термостата
datatype getResultT() {
return constrain((targetTemp - indoorTemp), -3, 3) * Kt;
}
};

View File

@@ -147,19 +147,8 @@ public:
return topic; return topic;
} }
template <class DT, class VT>
String getEntityIdWithPrefix(DT domain, VT value, char separator = '_') {
String topic = "";
topic.concat(domain);
topic.concat('.');
topic.concat(this->devicePrefix);
topic.concat(separator);
topic.concat(value);
return topic;
}
template <class T> template <class T>
String getUniqueIdWithPrefix(T value, char separator = '_') { String getObjectIdWithPrefix(T value, char separator = '_') {
String topic = ""; String topic = "";
topic.concat(this->devicePrefix); topic.concat(this->devicePrefix);
topic.concat(separator); topic.concat(separator);

View File

@@ -12,67 +12,66 @@ const char HA_ENTITY_SELECT[] PROGMEM = "select";
const char HA_ENTITY_SENSOR[] PROGMEM = "sensor"; const char HA_ENTITY_SENSOR[] PROGMEM = "sensor";
const char HA_ENTITY_SWITCH[] PROGMEM = "switch"; const char HA_ENTITY_SWITCH[] PROGMEM = "switch";
// https://www.home-assistant.io/integrations/mqtt/#supported-abbreviations-in-mqtt-discovery-messages const char HA_DEVICE[] PROGMEM = "device";
const char HA_DEFAULT_ENTITY_ID[] PROGMEM = "def_ent_id"; // "default_entity_id " const char HA_IDENTIFIERS[] PROGMEM = "identifiers";
const char HA_DEVICE[] PROGMEM = "dev"; // "device" const char HA_SW_VERSION[] PROGMEM = "sw_version";
const char HA_IDENTIFIERS[] PROGMEM = "ids"; // "identifiers" const char HA_MANUFACTURER[] PROGMEM = "manufacturer";
const char HA_SW_VERSION[] PROGMEM = "sw"; // "sw_version" const char HA_MODEL[] PROGMEM = "model";
const char HA_MANUFACTURER[] PROGMEM = "mf"; // "manufacturer"
const char HA_MODEL[] PROGMEM = "mdl"; // "model"
const char HA_NAME[] PROGMEM = "name"; const char HA_NAME[] PROGMEM = "name";
const char HA_CONF_URL[] PROGMEM = "cu"; // "configuration_url" const char HA_CONF_URL[] PROGMEM = "configuration_url";
const char HA_COMMAND_TOPIC[] PROGMEM = "cmd_t"; // "command_topic" const char HA_COMMAND_TOPIC[] PROGMEM = "command_topic";
const char HA_COMMAND_TEMPLATE[] PROGMEM = "cmd_tpl"; // "command_template" const char HA_COMMAND_TEMPLATE[] PROGMEM = "command_template";
const char HA_ENABLED_BY_DEFAULT[] PROGMEM = "en"; // "enabled_by_default" const char HA_ENABLED_BY_DEFAULT[] PROGMEM = "enabled_by_default";
const char HA_UNIQUE_ID[] PROGMEM = "uniq_id"; // "unique_id" const char HA_UNIQUE_ID[] PROGMEM = "unique_id";
const char HA_ENTITY_CATEGORY[] PROGMEM = "ent_cat"; // "entity_category" const char HA_OBJECT_ID[] PROGMEM = "object_id";
const char HA_ENTITY_CATEGORY[] PROGMEM = "entity_category";
const char HA_ENTITY_CATEGORY_DIAGNOSTIC[] PROGMEM = "diagnostic"; const char HA_ENTITY_CATEGORY_DIAGNOSTIC[] PROGMEM = "diagnostic";
const char HA_ENTITY_CATEGORY_CONFIG[] PROGMEM = "config"; const char HA_ENTITY_CATEGORY_CONFIG[] PROGMEM = "config";
const char HA_STATE_TOPIC[] PROGMEM = "stat_t"; // "state_topic" const char HA_STATE_TOPIC[] PROGMEM = "state_topic";
const char HA_VALUE_TEMPLATE[] PROGMEM = "val_tpl"; // "value_template" const char HA_VALUE_TEMPLATE[] PROGMEM = "value_template";
const char HA_OPTIONS[] PROGMEM = "ops"; // "options" const char HA_OPTIONS[] PROGMEM = "options";
const char HA_AVAILABILITY[] PROGMEM = "avty"; // "availability" const char HA_AVAILABILITY[] PROGMEM = "availability";
const char HA_AVAILABILITY_MODE[] PROGMEM = "avty_mode"; // "availability_mode" const char HA_AVAILABILITY_MODE[] PROGMEM = "availability_mode";
const char HA_TOPIC[] PROGMEM = "t"; // "topic" const char HA_TOPIC[] PROGMEM = "topic";
const char HA_DEVICE_CLASS[] PROGMEM = "dev_cla"; // "device_class" const char HA_DEVICE_CLASS[] PROGMEM = "device_class";
const char HA_UNIT_OF_MEASUREMENT[] PROGMEM = "unit_of_meas"; // "unit_of_measurement" const char HA_UNIT_OF_MEASUREMENT[] PROGMEM = "unit_of_measurement";
const char HA_UNIT_OF_MEASUREMENT_C[] PROGMEM = "°C"; const char HA_UNIT_OF_MEASUREMENT_C[] PROGMEM = "°C";
const char HA_UNIT_OF_MEASUREMENT_F[] PROGMEM = "°F"; const char HA_UNIT_OF_MEASUREMENT_F[] PROGMEM = "°F";
const char HA_UNIT_OF_MEASUREMENT_PERCENT[] PROGMEM = "%"; const char HA_UNIT_OF_MEASUREMENT_PERCENT[] PROGMEM = "%";
const char HA_UNIT_OF_MEASUREMENT_L_MIN[] PROGMEM = "L/min"; const char HA_UNIT_OF_MEASUREMENT_L_MIN[] PROGMEM = "L/min";
const char HA_UNIT_OF_MEASUREMENT_GAL_MIN[] PROGMEM = "gal/min"; const char HA_UNIT_OF_MEASUREMENT_GAL_MIN[] PROGMEM = "gal/min";
const char HA_ICON[] PROGMEM = "ic"; // "icon" const char HA_ICON[] PROGMEM = "icon";
const char HA_MIN[] PROGMEM = "min"; const char HA_MIN[] PROGMEM = "min";
const char HA_MAX[] PROGMEM = "max"; const char HA_MAX[] PROGMEM = "max";
const char HA_STEP[] PROGMEM = "step"; const char HA_STEP[] PROGMEM = "step";
const char HA_MODE[] PROGMEM = "mode"; const char HA_MODE[] PROGMEM = "mode";
const char HA_MODE_BOX[] PROGMEM = "box"; const char HA_MODE_BOX[] PROGMEM = "box";
const char HA_STATE_ON[] PROGMEM = "stat_on"; // "state_on" const char HA_STATE_ON[] PROGMEM = "state_on";
const char HA_STATE_OFF[] PROGMEM = "stat_off"; // "state_off" const char HA_STATE_OFF[] PROGMEM = "state_off";
const char HA_PAYLOAD_ON[] PROGMEM = "pl_on"; // "payload_on" const char HA_PAYLOAD_ON[] PROGMEM = "payload_on";
const char HA_PAYLOAD_OFF[] PROGMEM = "pl_off"; // "payload_off" const char HA_PAYLOAD_OFF[] PROGMEM = "payload_off";
const char HA_STATE_CLASS[] PROGMEM = "stat_cla"; // "state_class" const char HA_STATE_CLASS[] PROGMEM = "state_class";
const char HA_STATE_CLASS_MEASUREMENT[] PROGMEM = "measurement"; const char HA_STATE_CLASS_MEASUREMENT[] PROGMEM = "measurement";
const char HA_EXPIRE_AFTER[] PROGMEM = "exp_aft"; // "expire_after" const char HA_EXPIRE_AFTER[] PROGMEM = "expire_after";
const char HA_CURRENT_TEMPERATURE_TOPIC[] PROGMEM = "curr_temp_t"; // "current_temperature_topic" const char HA_CURRENT_TEMPERATURE_TOPIC[] PROGMEM = "current_temperature_topic";
const char HA_CURRENT_TEMPERATURE_TEMPLATE[] PROGMEM = "curr_temp_tpl"; // "current_temperature_template" const char HA_CURRENT_TEMPERATURE_TEMPLATE[] PROGMEM = "current_temperature_template";
const char HA_TEMPERATURE_COMMAND_TOPIC[] PROGMEM = "temp_cmd_t"; // "temperature_command_topic" const char HA_TEMPERATURE_COMMAND_TOPIC[] PROGMEM = "temperature_command_topic";
const char HA_TEMPERATURE_COMMAND_TEMPLATE[] PROGMEM = "temp_cmd_tpl"; // "temperature_command_template" const char HA_TEMPERATURE_COMMAND_TEMPLATE[] PROGMEM = "temperature_command_template";
const char HA_TEMPERATURE_STATE_TOPIC[] PROGMEM = "temp_stat_t"; // "temperature_state_topic" const char HA_TEMPERATURE_STATE_TOPIC[] PROGMEM = "temperature_state_topic";
const char HA_TEMPERATURE_STATE_TEMPLATE[] PROGMEM = "temp_stat_tpl"; // "temperature_state_template" const char HA_TEMPERATURE_STATE_TEMPLATE[] PROGMEM = "temperature_state_template";
const char HA_TEMPERATURE_UNIT[] PROGMEM = "temp_unit"; // "temperature_unit" const char HA_TEMPERATURE_UNIT[] PROGMEM = "temperature_unit";
const char HA_MODE_COMMAND_TOPIC[] PROGMEM = "mode_cmd_t"; // "mode_command_topic" const char HA_MODE_COMMAND_TOPIC[] PROGMEM = "mode_command_topic";
const char HA_MODE_COMMAND_TEMPLATE[] PROGMEM = "mode_cmd_tpl"; // "mode_command_template" const char HA_MODE_COMMAND_TEMPLATE[] PROGMEM = "mode_command_template";
const char HA_MODE_STATE_TOPIC[] PROGMEM = "mode_stat_t"; // "mode_state_topic" const char HA_MODE_STATE_TOPIC[] PROGMEM = "mode_state_topic";
const char HA_MODE_STATE_TEMPLATE[] PROGMEM = "mode_stat_tpl"; // "mode_state_template" const char HA_MODE_STATE_TEMPLATE[] PROGMEM = "mode_state_template";
const char HA_MODES[] PROGMEM = "modes"; const char HA_MODES[] PROGMEM = "modes";
const char HA_ACTION_TOPIC[] PROGMEM = "act_t"; // "action_topic" const char HA_ACTION_TOPIC[] PROGMEM = "action_topic";
const char HA_ACTION_TEMPLATE[] PROGMEM = "act_tpl"; // "action_template" const char HA_ACTION_TEMPLATE[] PROGMEM = "action_template";
const char HA_MIN_TEMP[] PROGMEM = "min_temp"; const char HA_MIN_TEMP[] PROGMEM = "min_temp";
const char HA_MAX_TEMP[] PROGMEM = "max_temp"; const char HA_MAX_TEMP[] PROGMEM = "max_temp";
const char HA_TEMP_STEP[] PROGMEM = "temp_step"; const char HA_TEMP_STEP[] PROGMEM = "temp_step";
const char HA_PRESET_MODE_COMMAND_TOPIC[] PROGMEM = "pr_mode_cmd_t"; // "preset_mode_command_topic" const char HA_PRESET_MODE_COMMAND_TOPIC[] PROGMEM = "preset_mode_command_topic";
const char HA_PRESET_MODE_COMMAND_TEMPLATE[] PROGMEM = "pr_mode_cmd_tpl"; // "preset_mode_command_template" const char HA_PRESET_MODE_COMMAND_TEMPLATE[] PROGMEM = "preset_mode_command_template";
const char HA_PRESET_MODE_STATE_TOPIC[] PROGMEM = "pr_mode_stat_t"; // "preset_mode_state_topic" const char HA_PRESET_MODE_STATE_TOPIC[] PROGMEM = "preset_mode_state_topic";
const char HA_PRESET_MODE_VALUE_TEMPLATE[] PROGMEM = "pr_mode_val_tpl"; // "preset_mode_value_template" const char HA_PRESET_MODE_VALUE_TEMPLATE[] PROGMEM = "preset_mode_value_template";
const char HA_PRESET_MODES[] PROGMEM = "pr_modes"; // "preset_modes" const char HA_PRESET_MODES[] PROGMEM = "preset_modes";

View File

@@ -35,7 +35,7 @@ namespace NetworkUtils {
return this; return this;
} }
NetworkMgr* setApCredentials(const char* ssid, const char* password = nullptr, uint8_t channel = 0) { NetworkMgr* setApCredentials(const char* ssid, const char* password = nullptr, byte channel = 0) {
this->apName = ssid; this->apName = ssid;
this->apPassword = password; this->apPassword = password;
this->apChannel = channel; this->apChannel = channel;
@@ -43,7 +43,7 @@ namespace NetworkUtils {
return this; return this;
} }
NetworkMgr* setStaCredentials(const char* ssid = nullptr, const char* password = nullptr, uint8_t channel = 0) { NetworkMgr* setStaCredentials(const char* ssid = nullptr, const char* password = nullptr, byte channel = 0) {
this->staSsid = ssid; this->staSsid = ssid;
this->staPassword = password; this->staPassword = password;
this->staChannel = channel; this->staChannel = channel;
@@ -140,7 +140,7 @@ namespace NetworkUtils {
return this->staPassword; return this->staPassword;
} }
uint8_t getStaChannel() { byte getStaChannel() {
return this->staChannel; return this->staChannel;
} }
@@ -377,7 +377,7 @@ namespace NetworkUtils {
} }
} }
static uint8_t rssiToSignalQuality(short int rssi) { static byte rssiToSignalQuality(short int rssi) {
return constrain(map(rssi, -100, -50, 0, 100), 0, 100); return constrain(map(rssi, -100, -50, 0, 100), 0, 100);
} }
@@ -397,11 +397,11 @@ namespace NetworkUtils {
const char* hostname = "esp"; const char* hostname = "esp";
const char* apName = "ESP"; const char* apName = "ESP";
const char* apPassword = nullptr; const char* apPassword = nullptr;
uint8_t apChannel = 1; byte apChannel = 1;
const char* staSsid = nullptr; const char* staSsid = nullptr;
const char* staPassword = nullptr; const char* staPassword = nullptr;
uint8_t staChannel = 0; byte staChannel = 0;
bool useDhcp = true; bool useDhcp = true;
IPAddress staticIp; IPAddress staticIp;

View File

@@ -1,6 +1,6 @@
#include <Arduino.h> #include <Arduino.h>
class UpgradeHandler : public AsyncWebHandler { class UpgradeHandler : public RequestHandler {
public: public:
enum class UpgradeType { enum class UpgradeType {
FIRMWARE = 0, FIRMWARE = 0,
@@ -12,7 +12,7 @@ public:
NO_FILE, NO_FILE,
SUCCESS, SUCCESS,
PROHIBITED, PROHIBITED,
SIZE_MISMATCH, ABORTED,
ERROR_ON_START, ERROR_ON_START,
ERROR_ON_WRITE, ERROR_ON_WRITE,
ERROR_ON_FINISH ERROR_ON_FINISH
@@ -22,21 +22,27 @@ public:
UpgradeType type; UpgradeType type;
UpgradeStatus status; UpgradeStatus status;
String error; String error;
size_t progress = 0;
size_t size = 0;
} UpgradeResult; } UpgradeResult;
typedef std::function<bool(AsyncWebServerRequest *request, UpgradeType)> BeforeUpgradeCallback; typedef std::function<bool(HTTPMethod, const String&)> CanHandleCallback;
typedef std::function<void(AsyncWebServerRequest *request, const UpgradeResult&, const UpgradeResult&)> AfterUpgradeCallback; typedef std::function<bool(const String&)> CanUploadCallback;
typedef std::function<bool(UpgradeType)> BeforeUpgradeCallback;
typedef std::function<void(const UpgradeResult&, const UpgradeResult&)> AfterUpgradeCallback;
UpgradeHandler(AsyncURIMatcher uri) : uri(uri) {} UpgradeHandler(const char* uri) {
this->uri = uri;
}
bool canHandle(AsyncWebServerRequest *request) const override final { UpgradeHandler* setCanHandleCallback(CanHandleCallback callback = nullptr) {
if (!request->isHTTP()) { this->canHandleCallback = callback;
return false;
} return this;
}
return this->uri.matches(request);
UpgradeHandler* setCanUploadCallback(CanUploadCallback callback = nullptr) {
this->canUploadCallback = callback;
return this;
} }
UpgradeHandler* setBeforeUpgradeCallback(BeforeUpgradeCallback callback = nullptr) { UpgradeHandler* setBeforeUpgradeCallback(BeforeUpgradeCallback callback = nullptr) {
@@ -51,9 +57,29 @@ public:
return this; return this;
} }
void handleRequest(AsyncWebServerRequest *request) override final { #if defined(ARDUINO_ARCH_ESP32)
bool canHandle(WebServer &server, HTTPMethod method, const String &uri) override {
return this->canHandle(method, uri);
}
#endif
bool canHandle(HTTPMethod method, const String& uri) override {
return method == HTTP_POST && uri.equals(this->uri) && (!this->canHandleCallback || this->canHandleCallback(method, uri));
}
#if defined(ARDUINO_ARCH_ESP32)
bool canUpload(WebServer &server, const String &uri) override {
return this->canUpload(uri);
}
#endif
bool canUpload(const String& uri) override {
return uri.equals(this->uri) && (!this->canUploadCallback || this->canUploadCallback(uri));
}
bool handle(WebServer& server, HTTPMethod method, const String& uri) override {
if (this->afterUpgradeCallback) { if (this->afterUpgradeCallback) {
this->afterUpgradeCallback(request, this->firmwareResult, this->filesystemResult); this->afterUpgradeCallback(this->firmwareResult, this->filesystemResult);
} }
this->firmwareResult.status = UpgradeStatus::NONE; this->firmwareResult.status = UpgradeStatus::NONE;
@@ -61,147 +87,129 @@ public:
this->filesystemResult.status = UpgradeStatus::NONE; this->filesystemResult.status = UpgradeStatus::NONE;
this->filesystemResult.error.clear(); this->filesystemResult.error.clear();
return true;
} }
void handleUpload(AsyncWebServerRequest *request, const String &fileName, size_t index, uint8_t *data, size_t dataLength, bool isFinal) override final { void upload(WebServer& server, const String& uri, HTTPUpload& upload) override {
UpgradeResult* result = nullptr; UpgradeResult* result;
if (upload.name.equals(F("firmware"))) {
if (!request->hasParam(asyncsrv::T_name, true, true)) {
// Missing content-disposition 'name' parameter
return;
}
const auto& pName = request->getParam(asyncsrv::T_name, true, true)->value();
if (pName.equals("fw")) {
result = &this->firmwareResult; result = &this->firmwareResult;
if (!index) { } else if (upload.name.equals(F("filesystem"))) {
result->progress = 0;
result->size = request->hasParam("fw_size", true)
? request->getParam("fw_size", true)->value().toInt()
: 0;
}
} else if (pName.equals("fs")) {
result = &this->filesystemResult; result = &this->filesystemResult;
if (!index) {
result->progress = 0;
result->size = request->hasParam("fs_size", true)
? request->getParam("fs_size", true)->value().toInt()
: 0;
}
} else { } else {
// Unknown parameter name
return; return;
} }
// check result status
if (result->status != UpgradeStatus::NONE) { if (result->status != UpgradeStatus::NONE) {
return; return;
} }
if (this->beforeUpgradeCallback && !this->beforeUpgradeCallback(request, result->type)) { if (this->beforeUpgradeCallback && !this->beforeUpgradeCallback(result->type)) {
result->status = UpgradeStatus::PROHIBITED; result->status = UpgradeStatus::PROHIBITED;
return; return;
} }
if (!fileName.length()) { if (!upload.filename.length()) {
result->status = UpgradeStatus::NO_FILE; result->status = UpgradeStatus::NO_FILE;
return; return;
} }
if (!index) { if (upload.status == UPLOAD_FILE_START) {
// reset // reset
if (Update.isRunning()) { if (Update.isRunning()) {
Update.end(false); Update.end(false);
Update.clearError(); Update.clearError();
} }
// try begin
bool begin = false; bool begin = false;
#ifdef ARDUINO_ARCH_ESP8266
Update.runAsync(true);
if (result->type == UpgradeType::FIRMWARE) {
begin = Update.begin((ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000, U_FLASH);
} else if (result->type == UpgradeType::FILESYSTEM) {
close_all_fs();
begin = Update.begin((size_t)FS_end - (size_t)FS_start, U_FS);
}
#elif defined(ARDUINO_ARCH_ESP32)
if (result->type == UpgradeType::FIRMWARE) { if (result->type == UpgradeType::FIRMWARE) {
begin = Update.begin(UPDATE_SIZE_UNKNOWN, U_FLASH); begin = Update.begin(UPDATE_SIZE_UNKNOWN, U_FLASH);
} else if (result->type == UpgradeType::FILESYSTEM) { } else if (result->type == UpgradeType::FILESYSTEM) {
begin = Update.begin(UPDATE_SIZE_UNKNOWN, U_SPIFFS); begin = Update.begin(UPDATE_SIZE_UNKNOWN, U_SPIFFS);
} }
#endif
if (!begin || Update.hasError()) { if (!begin || Update.hasError()) {
result->status = UpgradeStatus::ERROR_ON_START; result->status = UpgradeStatus::ERROR_ON_START;
#ifdef ARDUINO_ARCH_ESP8266
result->error = Update.getErrorString();
#else
result->error = Update.errorString(); result->error = Update.errorString();
#endif
Log.serrorln(FPSTR(L_PORTAL_OTA), "File '%s', on start: %s", fileName.c_str(), result->error.c_str()); Log.serrorln(FPSTR(L_PORTAL_OTA), F("File '%s', on start: %s"), upload.filename.c_str(), result->error.c_str());
return; return;
} }
Log.sinfoln(FPSTR(L_PORTAL_OTA), "File '%s', started", fileName.c_str()); Log.sinfoln(FPSTR(L_PORTAL_OTA), F("File '%s', started"), upload.filename.c_str());
}
} else if (upload.status == UPLOAD_FILE_WRITE) {
if (dataLength) { if (Update.write(upload.buf, upload.currentSize) != upload.currentSize) {
if (Update.write(data, dataLength) != dataLength) {
Update.end(false); Update.end(false);
result->status = UpgradeStatus::ERROR_ON_WRITE; result->status = UpgradeStatus::ERROR_ON_WRITE;
#ifdef ARDUINO_ARCH_ESP8266
result->error = Update.getErrorString();
#else
result->error = Update.errorString(); result->error = Update.errorString();
#endif
Log.serrorln( Log.serrorln(
FPSTR(L_PORTAL_OTA), "File '%s', on write %d bytes, %d of %d bytes", FPSTR(L_PORTAL_OTA),
fileName.c_str(), F("File '%s', on writing %d bytes: %s"),
dataLength, upload.filename.c_str(), upload.totalSize, result->error.c_str()
result->progress + dataLength,
result->size
); );
return;
}
result->progress += dataLength;
Log.sinfoln(
FPSTR(L_PORTAL_OTA), "File '%s', write %d bytes, %d of %d bytes",
fileName.c_str(),
dataLength,
result->progress,
result->size
);
}
if (result->size > 0) { } else {
if (result->progress > result->size || (isFinal && result->progress < result->size)) { Log.sinfoln(FPSTR(L_PORTAL_OTA), F("File '%s', writed %d bytes"), upload.filename.c_str(), upload.totalSize);
Update.end(false);
result->status = UpgradeStatus::SIZE_MISMATCH;
Log.serrorln(
FPSTR(L_PORTAL_OTA), "File '%s', size mismatch: %d of %d bytes",
fileName.c_str(),
result->progress,
result->size
);
return;
} }
}
} else if (upload.status == UPLOAD_FILE_END) {
if (isFinal) { if (Update.end(true)) {
if (!Update.end(true)) { result->status = UpgradeStatus::SUCCESS;
Log.sinfoln(FPSTR(L_PORTAL_OTA), F("File '%s': finish"), upload.filename.c_str());
} else {
result->status = UpgradeStatus::ERROR_ON_FINISH; result->status = UpgradeStatus::ERROR_ON_FINISH;
#ifdef ARDUINO_ARCH_ESP8266
result->error = Update.getErrorString();
#else
result->error = Update.errorString(); result->error = Update.errorString();
#endif
Log.serrorln(FPSTR(L_PORTAL_OTA), "File '%s', on finish: %s", fileName.c_str(), result->error); Log.serrorln(FPSTR(L_PORTAL_OTA), F("File '%s', on finish: %s"), upload.filename.c_str(), result->error);
return;
} }
result->status = UpgradeStatus::SUCCESS; } else if (upload.status == UPLOAD_FILE_ABORTED) {
Log.sinfoln(FPSTR(L_PORTAL_OTA), "File '%s': finish", fileName.c_str()); Update.end(false);
} result->status = UpgradeStatus::ABORTED;
}
bool isRequestHandlerTrivial() const override final { Log.serrorln(FPSTR(L_PORTAL_OTA), F("File '%s': aborted"), upload.filename.c_str());
return false; }
} }
protected: protected:
CanHandleCallback canHandleCallback;
CanUploadCallback canUploadCallback;
BeforeUpgradeCallback beforeUpgradeCallback; BeforeUpgradeCallback beforeUpgradeCallback;
AfterUpgradeCallback afterUpgradeCallback; AfterUpgradeCallback afterUpgradeCallback;
AsyncURIMatcher uri; const char* uri = nullptr;
UpgradeResult firmwareResult{UpgradeType::FIRMWARE, UpgradeStatus::NONE}; UpgradeResult firmwareResult{UpgradeType::FIRMWARE, UpgradeStatus::NONE};
UpgradeResult filesystemResult{UpgradeType::FILESYSTEM, UpgradeStatus::NONE}; UpgradeResult filesystemResult{UpgradeType::FILESYSTEM, UpgradeStatus::NONE};

View File

@@ -1,275 +1,375 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[platformio] [platformio]
;extra_configs = secrets.ini ;extra_configs = secrets.ini
extra_configs = secrets.default.ini extra_configs = secrets.default.ini
core_dir = .pio core_dir = .pio
[env] [env]
version = 1.5.7-passiveble version = 1.5.6
framework = arduino framework = arduino
lib_deps = ESP32Async/AsyncTCP lib_deps =
;ESP32Async/ESPAsyncWebServer bblanchon/ArduinoJson@^7.3.0
https://github.com/ESP32Async/ESPAsyncWebServer ;ihormelnyk/OpenTherm Library@^1.1.5
bblanchon/ArduinoJson@^7.4.2 https://github.com/Laxilef/opentherm_library#esp32_timer
;ihormelnyk/OpenTherm Library@^1.1.5 arduino-libraries/ArduinoMqttClient@^0.1.8
https://github.com/Laxilef/opentherm_library#esp32_timer lennarthennigs/ESP Telnet@^2.2
arduino-libraries/ArduinoMqttClient@^0.1.8 gyverlibs/FileData@^1.0.2
lennarthennigs/ESP Telnet@^2.2.3 gyverlibs/GyverPID@^3.3.2
gyverlibs/FileData@^1.0.3 gyverlibs/GyverBlinker@^1.1.1
gyverlibs/GyverPID@^3.3.2 https://github.com/pstolarz/Arduino-Temperature-Control-Library.git#OneWireNg
gyverlibs/GyverBlinker@^1.1.1 laxilef/TinyLogger@^1.1.1
https://github.com/pstolarz/Arduino-Temperature-Control-Library.git#OneWireNg build_type = ${secrets.build_type}
laxilef/TinyLogger@^1.1.1 build_flags =
build_type = ${secrets.build_type} -mtext-section-literals
build_flags = -mtext-section-literals -D MQTT_CLIENT_STD_FUNCTION_CALLBACK=1
-Wno-deprecated-declarations ;-D DEBUG_ESP_CORE -D DEBUG_ESP_WIFI -D DEBUG_ESP_HTTP_SERVER -D DEBUG_ESP_PORT=Serial
-D MQTT_CLIENT_STD_FUNCTION_CALLBACK=1 -D BUILD_VERSION='"${this.version}"'
;-D DEBUG_ESP_CORE -D DEBUG_ESP_WIFI -D DEBUG_ESP_HTTP_SERVER -D DEBUG_ESP_PORT=Serial -D BUILD_ENV='"$PIOENV"'
-D BUILD_VERSION='"${this.version}"' -D DEFAULT_SERIAL_ENABLED=${secrets.serial_enabled}
-D BUILD_ENV='"$PIOENV"' -D DEFAULT_SERIAL_BAUD=${secrets.serial_baud}
-D CONFIG_ASYNC_TCP_STACK_SIZE=4096 -D DEFAULT_TELNET_ENABLED=${secrets.telnet_enabled}
-D ARDUINOJSON_USE_DOUBLE=0 -D DEFAULT_TELNET_PORT=${secrets.telnet_port}
-D ARDUINOJSON_USE_LONG_LONG=0 -D DEFAULT_LOG_LEVEL=${secrets.log_level}
-D DEFAULT_SERIAL_ENABLED=${secrets.serial_enabled} -D DEFAULT_HOSTNAME='"${secrets.hostname}"'
-D DEFAULT_SERIAL_BAUD=${secrets.serial_baud} -D DEFAULT_AP_SSID='"${secrets.ap_ssid}"'
-D DEFAULT_TELNET_ENABLED=${secrets.telnet_enabled} -D DEFAULT_AP_PASSWORD='"${secrets.ap_password}"'
-D DEFAULT_TELNET_PORT=${secrets.telnet_port} -D DEFAULT_STA_SSID='"${secrets.sta_ssid}"'
-D DEFAULT_LOG_LEVEL=${secrets.log_level} -D DEFAULT_STA_PASSWORD='"${secrets.sta_password}"'
-D DEFAULT_HOSTNAME='"${secrets.hostname}"' -D DEFAULT_PORTAL_LOGIN='"${secrets.portal_login}"'
-D DEFAULT_AP_SSID='"${secrets.ap_ssid}"' -D DEFAULT_PORTAL_PASSWORD='"${secrets.portal_password}"'
-D DEFAULT_AP_PASSWORD='"${secrets.ap_password}"' -D DEFAULT_MQTT_ENABLED=${secrets.mqtt_enabled}
-D DEFAULT_STA_SSID='"${secrets.sta_ssid}"' -D DEFAULT_MQTT_SERVER='"${secrets.mqtt_server}"'
-D DEFAULT_STA_PASSWORD='"${secrets.sta_password}"' -D DEFAULT_MQTT_PORT=${secrets.mqtt_port}
-D DEFAULT_PORTAL_LOGIN='"${secrets.portal_login}"' -D DEFAULT_MQTT_USER='"${secrets.mqtt_user}"'
-D DEFAULT_PORTAL_PASSWORD='"${secrets.portal_password}"' -D DEFAULT_MQTT_PASSWORD='"${secrets.mqtt_password}"'
-D DEFAULT_MQTT_ENABLED=${secrets.mqtt_enabled} -D DEFAULT_MQTT_PREFIX='"${secrets.mqtt_prefix}"'
-D DEFAULT_MQTT_SERVER='"${secrets.mqtt_server}"' upload_speed = 921600
-D DEFAULT_MQTT_PORT=${secrets.mqtt_port} monitor_speed = 115200
-D DEFAULT_MQTT_USER='"${secrets.mqtt_user}"' ;monitor_filters = direct
-D DEFAULT_MQTT_PASSWORD='"${secrets.mqtt_password}"' monitor_filters =
-D DEFAULT_MQTT_PREFIX='"${secrets.mqtt_prefix}"' esp32_exception_decoder
upload_speed = 921600 esp8266_exception_decoder
monitor_speed = 115200 board_build.flash_mode = dio
;monitor_filters = direct board_build.filesystem = littlefs
monitor_filters = esp32_exception_decoder check_tool = ; pvs-studio
esp8266_exception_decoder check_flags =
board_build.flash_mode = dio ; pvs-studio:
board_build.filesystem = littlefs ; --analysis-mode=4
check_tool = ;pvs-studio ; --exclude-path=./.pio/libdeps
check_flags = ;pvs-studio: --analysis-mode=4 --exclude-path=./.pio/libdeps
; Defaults ; Defaults
[esp8266_defaults] [esp8266_defaults]
platform = espressif8266@^4.2.1 platform = espressif8266@^4.2.1
platform_packages = ${env.platform_packages} platform_packages = ${env.platform_packages}
lib_deps = ${env.lib_deps} lib_deps =
nrwiersma/ESP8266Scheduler@^1.2 ${env.lib_deps}
lib_ignore = nrwiersma/ESP8266Scheduler@^1.2
extra_scripts = post:tools/build.py lib_ignore =
build_type = ${env.build_type} extra_scripts =
build_flags = ${env.build_flags} post:tools/build.py
-D PIO_FRAMEWORK_ARDUINO_LWIP2_LOW_MEMORY build_type = ${env.build_type}
;-D PIO_FRAMEWORK_ARDUINO_LWIP2_HIGHER_BANDWIDTH_LOW_FLASH build_flags =
-D PIO_FRAMEWORK_ARDUINO_ESPRESSIF_SDK305 ${env.build_flags}
board_build.ldscript = eagle.flash.4m1m.ld -D PIO_FRAMEWORK_ARDUINO_LWIP2_LOW_MEMORY
check_tool = ${env.check_tool} ;-D PIO_FRAMEWORK_ARDUINO_LWIP2_HIGHER_BANDWIDTH_LOW_FLASH
check_flags = ${env.check_flags} -D PIO_FRAMEWORK_ARDUINO_ESPRESSIF_SDK305
board_build.ldscript = eagle.flash.4m1m.ld
check_tool = ${env.check_tool}
check_flags = ${env.check_flags}
[esp32_defaults] [esp32_defaults]
platform = https://github.com/pioarduino/platform-espressif32/releases/download/55.03.34/platform-espressif32.zip ;platform = espressif32@^6.7
platform_packages = ${env.platform_packages} ;platform = https://github.com/platformio/platform-espressif32.git
board_build.partitions = esp32_partitions.csv ;platform_packages =
lib_deps = ${env.lib_deps} ; framework-arduinoespressif32 @ https://github.com/espressif/arduino-esp32.git#3.0.5
laxilef/ESP32Scheduler@^1.0.1 ; framework-arduinoespressif32-libs @ https://github.com/espressif/esp32-arduino-lib-builder/releases/download/idf-release_v5.1/esp32-arduino-libs-idf-release_v5.1-33fbade6.zip
nimble_lib = https://github.com/h2zero/NimBLE-Arduino platform = https://github.com/pioarduino/platform-espressif32/releases/download/55.03.30-2/platform-espressif32.zip
lib_ignore = BluetoothSerial platform_packages = ${env.platform_packages}
SimpleBLE board_build.partitions = esp32_partitions.csv
ESP RainMaker lib_deps =
RainMaker ${env.lib_deps}
ESP Insights laxilef/ESP32Scheduler@^1.0.1
Insights nimble_lib = h2zero/NimBLE-Arduino@^2.1.0
Zigbee lib_ignore =
Matter extra_scripts =
OpenThread post:tools/esp32.py
dsp post:tools/build.py
custom_component_remove = espressif/esp_hosted build_type = ${env.build_type}
espressif/esp_wifi_remote build_flags =
espressif/esp-dsp ${env.build_flags}
espressif/esp_modem -D CORE_DEBUG_LEVEL=0
espressif/esp_rainmaker -Wl,--wrap=esp_panic_handler
espressif/rmaker_common check_tool = ${env.check_tool}
espressif/esp_insights check_flags = ${env.check_flags}
espressif/esp_diag_data_store
espressif/esp_diagnostics
espressif/libsodium
espressif/esp-modbus
espressif/esp-cbor
espressif/esp-sr
espressif/esp32-camera
espressif/qrcode
espressif/esp-zboss-lib
espressif/esp-zigbee-lib
chmorgan/esp-libhelix-mp3
extra_scripts = post:tools/esp32.py
post:tools/build.py
build_type = ${env.build_type}
build_flags = ${env.build_flags}
-D CORE_DEBUG_LEVEL=0
-Wl,--wrap=esp_panic_handler
check_tool = ${env.check_tool}
check_flags = ${env.check_flags}
; Boards ; Boards
[env:d1_mini] [env:d1_mini]
extends = esp8266_defaults platform = ${esp8266_defaults.platform}
board = d1_mini platform_packages = ${esp8266_defaults.platform_packages}
build_flags = ${esp8266_defaults.build_flags} board = d1_mini
-D DEFAULT_OT_IN_GPIO=4 lib_deps = ${esp8266_defaults.lib_deps}
-D DEFAULT_OT_OUT_GPIO=5 lib_ignore = ${esp8266_defaults.lib_ignore}
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12 extra_scripts = ${esp8266_defaults.extra_scripts}
-D DEFAULT_SENSOR_INDOOR_GPIO=14 board_build.ldscript = ${esp8266_defaults.board_build.ldscript}
-D DEFAULT_STATUS_LED_GPIO=13 build_type = ${esp8266_defaults.build_type}
-D DEFAULT_OT_RX_LED_GPIO=15 build_flags =
${esp8266_defaults.build_flags}
-D DEFAULT_OT_IN_GPIO=4
-D DEFAULT_OT_OUT_GPIO=5
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12
-D DEFAULT_SENSOR_INDOOR_GPIO=14
-D DEFAULT_STATUS_LED_GPIO=13
-D DEFAULT_OT_RX_LED_GPIO=15
check_tool = ${esp8266_defaults.check_tool}
check_flags = ${esp8266_defaults.check_flags}
[env:d1_mini_lite] [env:d1_mini_lite]
extends = esp8266_defaults platform = ${esp8266_defaults.platform}
board = d1_mini_lite platform_packages = ${esp8266_defaults.platform_packages}
build_flags = ${esp8266_defaults.build_flags} board = d1_mini_lite
-D DEFAULT_OT_IN_GPIO=4 lib_deps = ${esp8266_defaults.lib_deps}
-D DEFAULT_OT_OUT_GPIO=5 lib_ignore = ${esp8266_defaults.lib_ignore}
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12 extra_scripts = ${esp8266_defaults.extra_scripts}
-D DEFAULT_SENSOR_INDOOR_GPIO=14 board_build.ldscript = ${esp8266_defaults.board_build.ldscript}
-D DEFAULT_STATUS_LED_GPIO=13 build_type = ${esp8266_defaults.build_type}
-D DEFAULT_OT_RX_LED_GPIO=15 build_flags =
${esp8266_defaults.build_flags}
-D DEFAULT_OT_IN_GPIO=4
-D DEFAULT_OT_OUT_GPIO=5
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12
-D DEFAULT_SENSOR_INDOOR_GPIO=14
-D DEFAULT_STATUS_LED_GPIO=13
-D DEFAULT_OT_RX_LED_GPIO=15
check_tool = ${esp8266_defaults.check_tool}
check_flags = ${esp8266_defaults.check_flags}
[env:d1_mini_pro] [env:d1_mini_pro]
extends = esp8266_defaults platform = ${esp8266_defaults.platform}
board = d1_mini_pro platform_packages = ${esp8266_defaults.platform_packages}
build_flags = ${esp8266_defaults.build_flags} board = d1_mini_pro
-D DEFAULT_OT_IN_GPIO=4 lib_deps = ${esp8266_defaults.lib_deps}
-D DEFAULT_OT_OUT_GPIO=5 lib_ignore = ${esp8266_defaults.lib_ignore}
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12 extra_scripts = ${esp8266_defaults.extra_scripts}
-D DEFAULT_SENSOR_INDOOR_GPIO=14 board_build.ldscript = ${esp8266_defaults.board_build.ldscript}
-D DEFAULT_STATUS_LED_GPIO=13 build_type = ${esp8266_defaults.build_type}
-D DEFAULT_OT_RX_LED_GPIO=15 build_flags =
${esp8266_defaults.build_flags}
-D DEFAULT_OT_IN_GPIO=4
-D DEFAULT_OT_OUT_GPIO=5
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12
-D DEFAULT_SENSOR_INDOOR_GPIO=14
-D DEFAULT_STATUS_LED_GPIO=13
-D DEFAULT_OT_RX_LED_GPIO=15
check_tool = ${esp8266_defaults.check_tool}
check_flags = ${esp8266_defaults.check_flags}
[env:nodemcu_8266] [env:nodemcu_8266]
extends = esp8266_defaults platform = ${esp8266_defaults.platform}
board = nodemcuv2 platform_packages = ${esp8266_defaults.platform_packages}
build_flags = ${esp8266_defaults.build_flags} board = nodemcuv2
-D DEFAULT_OT_IN_GPIO=13 lib_deps = ${esp8266_defaults.lib_deps}
-D DEFAULT_OT_OUT_GPIO=15 lib_ignore = ${esp8266_defaults.lib_ignore}
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12 extra_scripts = ${esp8266_defaults.extra_scripts}
-D DEFAULT_SENSOR_INDOOR_GPIO=4 board_build.ldscript = ${esp8266_defaults.board_build.ldscript}
-D DEFAULT_STATUS_LED_GPIO=2 build_type = ${esp8266_defaults.build_type}
-D DEFAULT_OT_RX_LED_GPIO=16 build_flags =
${esp8266_defaults.build_flags}
-D DEFAULT_OT_IN_GPIO=13
-D DEFAULT_OT_OUT_GPIO=15
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12
-D DEFAULT_SENSOR_INDOOR_GPIO=4
-D DEFAULT_STATUS_LED_GPIO=2
-D DEFAULT_OT_RX_LED_GPIO=16
check_tool = ${esp8266_defaults.check_tool}
check_flags = ${esp8266_defaults.check_flags}
[env:s2_mini] [env:s2_mini]
extends = esp32_defaults platform = ${esp32_defaults.platform}
board = lolin_s2_mini platform_packages = ${esp32_defaults.platform_packages}
build_unflags = -DARDUINO_USB_MODE=1 board = lolin_s2_mini
build_flags = ${esp32_defaults.build_flags} board_build.partitions = ${esp32_defaults.board_build.partitions}
-D ARDUINO_USB_MODE=0 lib_deps = ${esp32_defaults.lib_deps}
-D ARDUINO_USB_CDC_ON_BOOT=1 lib_ignore = ${esp32_defaults.lib_ignore}
-D DEFAULT_OT_IN_GPIO=33 extra_scripts = ${esp32_defaults.extra_scripts}
-D DEFAULT_OT_OUT_GPIO=35 build_unflags =
-D DEFAULT_SENSOR_OUTDOOR_GPIO=9 -DARDUINO_USB_MODE=1
-D DEFAULT_SENSOR_INDOOR_GPIO=7 build_type = ${esp32_defaults.build_type}
-D DEFAULT_STATUS_LED_GPIO=11 build_flags =
-D DEFAULT_OT_RX_LED_GPIO=12 ${esp32_defaults.build_flags}
-D ARDUINO_USB_MODE=0
-D ARDUINO_USB_CDC_ON_BOOT=1
-D DEFAULT_OT_IN_GPIO=33
-D DEFAULT_OT_OUT_GPIO=35
-D DEFAULT_SENSOR_OUTDOOR_GPIO=9
-D DEFAULT_SENSOR_INDOOR_GPIO=7
-D DEFAULT_STATUS_LED_GPIO=11
-D DEFAULT_OT_RX_LED_GPIO=12
check_tool = ${esp32_defaults.check_tool}
check_flags = ${esp32_defaults.check_flags}
[env:s3_mini] [env:s3_mini]
extends = esp32_defaults platform = ${esp32_defaults.platform}
board = lolin_s3_mini platform_packages = ${esp32_defaults.platform_packages}
lib_deps = ${esp32_defaults.lib_deps} board = lolin_s3_mini
${esp32_defaults.nimble_lib} board_build.partitions = ${esp32_defaults.board_build.partitions}
build_unflags = -DARDUINO_USB_MODE=1 lib_deps =
build_flags = ${esp32_defaults.build_flags} ${esp32_defaults.lib_deps}
-D ARDUINO_USB_MODE=0 ${esp32_defaults.nimble_lib}
-D ARDUINO_USB_CDC_ON_BOOT=1 lib_ignore = ${esp32_defaults.lib_ignore}
-D USE_BLE=1 extra_scripts = ${esp32_defaults.extra_scripts}
-D MYNEWT_VAL_BLE_EXT_ADV=1 build_unflags =
-D DEFAULT_OT_IN_GPIO=35 -DARDUINO_USB_MODE=1
-D DEFAULT_OT_OUT_GPIO=36 build_type = ${esp32_defaults.build_type}
-D DEFAULT_SENSOR_OUTDOOR_GPIO=13 build_flags =
-D DEFAULT_SENSOR_INDOOR_GPIO=12 ${esp32_defaults.build_flags}
-D DEFAULT_STATUS_LED_GPIO=11 -D ARDUINO_USB_MODE=0
-D DEFAULT_OT_RX_LED_GPIO=10 -D ARDUINO_USB_CDC_ON_BOOT=1
-D CONFIG_BT_NIMBLE_EXT_ADV=1
-D USE_BLE=1
-D DEFAULT_OT_IN_GPIO=35
-D DEFAULT_OT_OUT_GPIO=36
-D DEFAULT_SENSOR_OUTDOOR_GPIO=13
-D DEFAULT_SENSOR_INDOOR_GPIO=12
-D DEFAULT_STATUS_LED_GPIO=11
-D DEFAULT_OT_RX_LED_GPIO=10
check_tool = ${esp32_defaults.check_tool}
check_flags = ${esp32_defaults.check_flags}
[env:c3_mini] [env:c3_mini]
extends = esp32_defaults platform = ${esp32_defaults.platform}
board = lolin_c3_mini platform_packages = ${esp32_defaults.platform_packages}
lib_deps = ${esp32_defaults.lib_deps} board = lolin_c3_mini
${esp32_defaults.nimble_lib} board_build.partitions = ${esp32_defaults.board_build.partitions}
build_unflags = -mtext-section-literals lib_deps =
build_flags = ${esp32_defaults.build_flags} ${esp32_defaults.lib_deps}
-D USE_BLE=1 ${esp32_defaults.nimble_lib}
-D DEFAULT_OT_IN_GPIO=8 lib_ignore = ${esp32_defaults.lib_ignore}
-D DEFAULT_OT_OUT_GPIO=10 extra_scripts = ${esp32_defaults.extra_scripts}
-D DEFAULT_SENSOR_OUTDOOR_GPIO=0 build_unflags =
-D DEFAULT_SENSOR_INDOOR_GPIO=1 -mtext-section-literals
-D DEFAULT_STATUS_LED_GPIO=4 build_type = ${esp32_defaults.build_type}
-D DEFAULT_OT_RX_LED_GPIO=5 build_flags =
${esp32_defaults.build_flags}
-D CONFIG_BT_NIMBLE_EXT_ADV=1
-D USE_BLE=1
-D DEFAULT_OT_IN_GPIO=8
-D DEFAULT_OT_OUT_GPIO=10
-D DEFAULT_SENSOR_OUTDOOR_GPIO=0
-D DEFAULT_SENSOR_INDOOR_GPIO=1
-D DEFAULT_STATUS_LED_GPIO=4
-D DEFAULT_OT_RX_LED_GPIO=5
check_tool = ${esp32_defaults.check_tool}
check_flags = ${esp32_defaults.check_flags}
[env:nodemcu_32] [env:nodemcu_32]
extends = esp32_defaults platform = ${esp32_defaults.platform}
board = nodemcu-32s platform_packages = ${esp32_defaults.platform_packages}
lib_deps = ${esp32_defaults.lib_deps} board = nodemcu-32s
${esp32_defaults.nimble_lib} board_build.partitions = ${esp32_defaults.board_build.partitions}
build_flags = ${esp32_defaults.build_flags} lib_deps =
-D USE_BLE=1 ${esp32_defaults.lib_deps}
-D DEFAULT_OT_IN_GPIO=16 ${esp32_defaults.nimble_lib}
-D DEFAULT_OT_OUT_GPIO=4 lib_ignore = ${esp32_defaults.lib_ignore}
-D DEFAULT_SENSOR_OUTDOOR_GPIO=15 extra_scripts = ${esp32_defaults.extra_scripts}
-D DEFAULT_SENSOR_INDOOR_GPIO=26 build_type = ${esp32_defaults.build_type}
-D DEFAULT_STATUS_LED_GPIO=2 build_flags =
-D DEFAULT_OT_RX_LED_GPIO=19 ${esp32_defaults.build_flags}
-D USE_BLE=1
[env:nodemcu_32_160mhz] -D DEFAULT_OT_IN_GPIO=16
extends = env:nodemcu_32 -D DEFAULT_OT_OUT_GPIO=4
board_build.f_cpu = 160000000L ; set frequency to 160MHz -D DEFAULT_SENSOR_OUTDOOR_GPIO=15
-D DEFAULT_SENSOR_INDOOR_GPIO=26
-D DEFAULT_STATUS_LED_GPIO=2
-D DEFAULT_OT_RX_LED_GPIO=19
check_tool = ${esp32_defaults.check_tool}
check_flags = ${esp32_defaults.check_flags}
[env:d1_mini32] [env:d1_mini32]
extends = esp32_defaults platform = ${esp32_defaults.platform}
board = wemos_d1_mini32 platform_packages = ${esp32_defaults.platform_packages}
lib_deps = ${esp32_defaults.lib_deps} board = wemos_d1_mini32
${esp32_defaults.nimble_lib} board_build.partitions = ${esp32_defaults.board_build.partitions}
build_flags = ${esp32_defaults.build_flags} lib_deps =
-D USE_BLE=1 ${esp32_defaults.lib_deps}
-D DEFAULT_OT_IN_GPIO=21 ${esp32_defaults.nimble_lib}
-D DEFAULT_OT_OUT_GPIO=22 lib_ignore = ${esp32_defaults.lib_ignore}
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12 extra_scripts = ${esp32_defaults.extra_scripts}
-D DEFAULT_SENSOR_INDOOR_GPIO=18 build_type = ${esp32_defaults.build_type}
-D DEFAULT_STATUS_LED_GPIO=2 build_flags =
-D DEFAULT_OT_RX_LED_GPIO=19 ${esp32_defaults.build_flags}
-D USE_BLE=1
-D DEFAULT_OT_IN_GPIO=21
-D DEFAULT_OT_OUT_GPIO=22
-D DEFAULT_SENSOR_OUTDOOR_GPIO=12
-D DEFAULT_SENSOR_INDOOR_GPIO=18
-D DEFAULT_STATUS_LED_GPIO=2
-D DEFAULT_OT_RX_LED_GPIO=19
check_tool = ${esp32_defaults.check_tool}
check_flags = ${esp32_defaults.check_flags}
[env:esp32_c6] [env:esp32_c6]
extends = esp32_defaults platform = ${esp32_defaults.platform}
board = esp32-c6-devkitc-1 framework = arduino, espidf
lib_deps = ${esp32_defaults.lib_deps} platform_packages = ${esp32_defaults.platform_packages}
${esp32_defaults.nimble_lib} board = esp32-c6-devkitm-1
build_unflags = -mtext-section-literals board_build.partitions = ${esp32_defaults.board_build.partitions}
build_flags = ${esp32_defaults.build_flags} board_build.embed_txtfiles =
-D USE_BLE=1 managed_components/espressif__esp_insights/server_certs/https_server.crt
-D DEFAULT_OT_IN_GPIO=15 managed_components/espressif__esp_rainmaker/server_certs/rmaker_mqtt_server.crt
-D DEFAULT_OT_OUT_GPIO=23 managed_components/espressif__esp_rainmaker/server_certs/rmaker_claim_service_server.crt
-D DEFAULT_SENSOR_OUTDOOR_GPIO=0 managed_components/espressif__esp_rainmaker/server_certs/rmaker_ota_server.crt
-D DEFAULT_SENSOR_INDOOR_GPIO=0 lib_deps = ${esp32_defaults.lib_deps}
-D DEFAULT_STATUS_LED_GPIO=11 lib_ignore =
-D DEFAULT_OT_RX_LED_GPIO=10 ${esp32_defaults.lib_ignore}
extra_scripts = ${esp32_defaults.extra_scripts}
build_unflags =
-mtext-section-literals
build_type = ${esp32_defaults.build_type}
build_flags =
${esp32_defaults.build_flags}
-D USE_BLE=1
-D DEFAULT_OT_IN_GPIO=15
-D DEFAULT_OT_OUT_GPIO=23
-D DEFAULT_SENSOR_OUTDOOR_GPIO=0
-D DEFAULT_SENSOR_INDOOR_GPIO=0
-D DEFAULT_STATUS_LED_GPIO=11
-D DEFAULT_OT_RX_LED_GPIO=10
check_tool = ${esp32_defaults.check_tool}
check_flags = ${esp32_defaults.check_flags}
[env:otthing] [env:otthing]
extends = esp32_defaults platform = ${esp32_defaults.platform}
board = lolin_c3_mini platform_packages = ${esp32_defaults.platform_packages}
lib_deps = ${esp32_defaults.lib_deps} board = lolin_c3_mini
${esp32_defaults.nimble_lib} board_build.partitions = ${esp32_defaults.board_build.partitions}
build_unflags = -mtext-section-literals lib_deps =
build_flags = ${esp32_defaults.build_flags} ${esp32_defaults.lib_deps}
-D USE_BLE=1 ${esp32_defaults.nimble_lib}
-D DEFAULT_OT_IN_GPIO=3 lib_ignore = ${esp32_defaults.lib_ignore}
-D DEFAULT_OT_OUT_GPIO=1 extra_scripts = ${esp32_defaults.extra_scripts}
;-D DEFAULT_SENSOR_OUTDOOR_GPIO=0 build_unflags =
;-D DEFAULT_SENSOR_INDOOR_GPIO=1 -mtext-section-literals
-D DEFAULT_STATUS_LED_GPIO=8 build_type = ${esp32_defaults.build_type}
-D DEFAULT_OT_RX_LED_GPIO=2 build_flags =
-D OT_BYPASS_RELAY_GPIO=20 ${esp32_defaults.build_flags}
-D CONFIG_BT_NIMBLE_EXT_ADV=1
-D USE_BLE=1
-D DEFAULT_OT_IN_GPIO=3
-D DEFAULT_OT_OUT_GPIO=1
; -D DEFAULT_SENSOR_OUTDOOR_GPIO=0
; -D DEFAULT_SENSOR_INDOOR_GPIO=1
-D DEFAULT_STATUS_LED_GPIO=8
-D DEFAULT_OT_RX_LED_GPIO=2
-D OT_BYPASS_RELAY_GPIO=20
check_tool = ${esp32_defaults.check_tool}
check_flags = ${esp32_defaults.check_flags}

View File

@@ -3,8 +3,8 @@
class HaHelper : public HomeAssistantHelper { class HaHelper : public HomeAssistantHelper {
public: public:
static const uint8_t TEMP_SOURCE_HEATING = 0; static const byte TEMP_SOURCE_HEATING = 0;
static const uint8_t TEMP_SOURCE_INDOOR = 1; static const byte TEMP_SOURCE_INDOOR = 1;
static const char AVAILABILITY_OT_CONN[]; static const char AVAILABILITY_OT_CONN[];
static const char AVAILABILITY_SENSOR_CONN[]; static const char AVAILABILITY_SENSOR_CONN[];
@@ -261,13 +261,8 @@ public:
} }
// object id's // object id's
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(objId.c_str()); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(objId.c_str());
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix( doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
sSensor.type == Sensors::Type::MANUAL
? FPSTR(HA_ENTITY_NUMBER)
: FPSTR(HA_ENTITY_SENSOR),
objId.c_str()
);
const String& configTopic = this->makeConfigTopic( const String& configTopic = this->makeConfigTopic(
sSensor.type == Sensors::Type::MANUAL ? FPSTR(HA_ENTITY_NUMBER) : FPSTR(HA_ENTITY_SENSOR), sSensor.type == Sensors::Type::MANUAL ? FPSTR(HA_ENTITY_NUMBER) : FPSTR(HA_ENTITY_SENSOR),
@@ -328,8 +323,8 @@ public:
String objId = Sensors::makeObjectIdWithSuffix(sSensor.name, F("connected")); String objId = Sensors::makeObjectIdWithSuffix(sSensor.name, F("connected"));
// object id's // object id's
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(objId.c_str()); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(objId.c_str());
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), objId.c_str()); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
// state topic // state topic
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic( doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(
@@ -375,8 +370,8 @@ public:
String objId = Sensors::makeObjectIdWithSuffix(sSensor.name, F("signal_quality")); String objId = Sensors::makeObjectIdWithSuffix(sSensor.name, F("signal_quality"));
// object id's // object id's
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(objId.c_str()); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(objId.c_str());
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_SENSOR), objId.c_str()); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
// state topic // state topic
doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic( doc[FPSTR(HA_STATE_TOPIC)] = this->getDeviceTopic(
@@ -412,6 +407,7 @@ public:
} }
bool deleteSignalQualityDynamicSensor(Sensors::Settings& sSensor) { bool deleteSignalQualityDynamicSensor(Sensors::Settings& sSensor) {
JsonDocument doc;
const String& configTopic = this->makeConfigTopic( const String& configTopic = this->makeConfigTopic(
FPSTR(HA_ENTITY_SENSOR), FPSTR(HA_ENTITY_SENSOR),
Sensors::makeObjectIdWithSuffix(sSensor.name, F("signal_quality")).c_str() Sensors::makeObjectIdWithSuffix(sSensor.name, F("signal_quality")).c_str()
@@ -425,8 +421,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("heating_turbo")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("heating_turbo"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_SWITCH), F("heating_turbo")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("Turbo heating"); doc[FPSTR(HA_NAME)] = F("Turbo heating");
doc[FPSTR(HA_ICON)] = F("mdi:rocket-launch-outline"); doc[FPSTR(HA_ICON)] = F("mdi:rocket-launch-outline");
@@ -447,8 +443,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("heating_hysteresis")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("heating_hysteresis"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("heating_hysteresis")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE);
@@ -479,8 +475,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("heating_turbo_factor")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("heating_turbo_factor"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("heating_turbo_factor")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = F("power_factor"); doc[FPSTR(HA_DEVICE_CLASS)] = F("power_factor");
doc[FPSTR(HA_NAME)] = F("Heating turbo factor"); doc[FPSTR(HA_NAME)] = F("Heating turbo factor");
@@ -503,8 +499,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("heating_min_temp")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("heating_min_temp"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("heating_min_temp")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE);
@@ -537,8 +533,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("heating_max_temp")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("heating_max_temp"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("heating_max_temp")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE);
@@ -572,8 +568,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("dhw_min_temp")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("dhw_min_temp"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("dhw_min_temp")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE);
@@ -606,8 +602,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("dhw_max_temp")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("dhw_max_temp"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("dhw_max_temp")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE);
@@ -641,8 +637,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("pid")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("pid"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_SWITCH), F("pid")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("PID"); doc[FPSTR(HA_NAME)] = F("PID");
doc[FPSTR(HA_ICON)] = F("mdi:chart-bar-stacked"); doc[FPSTR(HA_ICON)] = F("mdi:chart-bar-stacked");
@@ -663,8 +659,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("pid_p")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("pid_p"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("pid_p")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("PID factor P"); doc[FPSTR(HA_NAME)] = F("PID factor P");
doc[FPSTR(HA_ICON)] = F("mdi:alpha-p-circle-outline"); doc[FPSTR(HA_ICON)] = F("mdi:alpha-p-circle-outline");
@@ -686,8 +682,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("pid_i")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("pid_i"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("pid_i")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("PID factor I"); doc[FPSTR(HA_NAME)] = F("PID factor I");
doc[FPSTR(HA_ICON)] = F("mdi:alpha-i-circle-outline"); doc[FPSTR(HA_ICON)] = F("mdi:alpha-i-circle-outline");
@@ -709,8 +705,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("pid_d")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("pid_d"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("pid_d")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("PID factor D"); doc[FPSTR(HA_NAME)] = F("PID factor D");
doc[FPSTR(HA_ICON)] = F("mdi:alpha-d-circle-outline"); doc[FPSTR(HA_ICON)] = F("mdi:alpha-d-circle-outline");
@@ -732,8 +728,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("pid_dt")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("pid_dt"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("pid_dt")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = F("duration"); doc[FPSTR(HA_DEVICE_CLASS)] = F("duration");
doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("s"); doc[FPSTR(HA_UNIT_OF_MEASUREMENT)] = F("s");
@@ -757,8 +753,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("pid_min_temp")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("pid_min_temp"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("pid_min_temp")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE);
@@ -791,8 +787,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("pid_max_temp")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("pid_max_temp"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("pid_max_temp")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE);
@@ -826,8 +822,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("equitherm")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("equitherm"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_SWITCH), F("equitherm")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("Equitherm"); doc[FPSTR(HA_NAME)] = F("Equitherm");
doc[FPSTR(HA_ICON)] = F("mdi:sun-snowflake-variant"); doc[FPSTR(HA_ICON)] = F("mdi:sun-snowflake-variant");
@@ -844,19 +840,19 @@ public:
return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_SWITCH), F("equitherm")).c_str(), doc); return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_SWITCH), F("equitherm")).c_str(), doc);
} }
bool publishInputEquithermFactorN(bool enabledByDefault = true) { bool publishInputEquithermSlope(bool enabledByDefault = true) {
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("equitherm_n")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("equitherm_slope"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("equitherm_n")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("Equitherm factor N"); doc[FPSTR(HA_NAME)] = F("Equitherm slope");
doc[FPSTR(HA_ICON)] = F("mdi:alpha-n-circle-outline"); doc[FPSTR(HA_ICON)] = F("mdi:slope-uphill");
doc[FPSTR(HA_STATE_TOPIC)] = this->settingsTopic.c_str(); doc[FPSTR(HA_STATE_TOPIC)] = this->settingsTopic.c_str();
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.equitherm.n_factor|float(0)|round(3) }}"); doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.equitherm.slope|float(0)|round(3) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->setSettingsTopic.c_str(); doc[FPSTR(HA_COMMAND_TOPIC)] = this->setSettingsTopic.c_str();
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"equitherm\": {\"n_factor\" : {{ value }}}}"); doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"equitherm\": {\"slope\" : {{ value }}}}");
doc[FPSTR(HA_MIN)] = 0.001f; doc[FPSTR(HA_MIN)] = 0.001f;
doc[FPSTR(HA_MAX)] = 10; doc[FPSTR(HA_MAX)] = 10;
doc[FPSTR(HA_STEP)] = 0.001f; doc[FPSTR(HA_STEP)] = 0.001f;
@@ -864,64 +860,88 @@ public:
doc[FPSTR(HA_EXPIRE_AFTER)] = this->expireAfter; doc[FPSTR(HA_EXPIRE_AFTER)] = this->expireAfter;
doc.shrinkToFit(); doc.shrinkToFit();
return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_n_factor")).c_str(), doc); return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_slope")).c_str(), doc);
} }
bool publishInputEquithermFactorK(bool enabledByDefault = true) { bool publishInputEquithermExponent(bool enabledByDefault = true) {
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("equitherm_k")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("equitherm_exponent"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("equitherm_k")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("Equitherm factor K"); doc[FPSTR(HA_NAME)] = F("Equitherm exponent");
doc[FPSTR(HA_ICON)] = F("mdi:alpha-k-circle-outline"); doc[FPSTR(HA_ICON)] = F("mdi:exponent");
doc[FPSTR(HA_STATE_TOPIC)] = this->settingsTopic.c_str(); doc[FPSTR(HA_STATE_TOPIC)] = this->settingsTopic.c_str();
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.equitherm.k_factor|float(0)|round(2) }}"); doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.equitherm.exponent|float(0)|round(3) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->setSettingsTopic.c_str(); doc[FPSTR(HA_COMMAND_TOPIC)] = this->setSettingsTopic.c_str();
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"equitherm\": {\"k_factor\" : {{ value }}}}"); doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"equitherm\": {\"exponent\" : {{ value }}}}");
doc[FPSTR(HA_MIN)] = 0; doc[FPSTR(HA_MIN)] = 0.1;
doc[FPSTR(HA_MAX)] = 10; doc[FPSTR(HA_MAX)] = 2;
doc[FPSTR(HA_STEP)] = 0.001f;
doc[FPSTR(HA_MODE)] = FPSTR(HA_MODE_BOX);
doc[FPSTR(HA_EXPIRE_AFTER)] = this->expireAfter;
doc.shrinkToFit();
return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_exponent")).c_str(), doc);
}
bool publishInputEquithermShift(bool enabledByDefault = true) {
JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("equitherm_shift"));
doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_TEMPERATURE);
doc[FPSTR(HA_NAME)] = F("Equitherm shift");
doc[FPSTR(HA_ICON)] = F("mdi:chart-areaspline");
doc[FPSTR(HA_STATE_TOPIC)] = this->settingsTopic.c_str();
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.equitherm.shift|float(0)|round(2) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->setSettingsTopic.c_str();
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"equitherm\": {\"shift\" : {{ value }}}}");
doc[FPSTR(HA_MIN)] = -15;
doc[FPSTR(HA_MAX)] = 15;
doc[FPSTR(HA_STEP)] = 0.01f; doc[FPSTR(HA_STEP)] = 0.01f;
doc[FPSTR(HA_MODE)] = FPSTR(HA_MODE_BOX); doc[FPSTR(HA_MODE)] = FPSTR(HA_MODE_BOX);
doc[FPSTR(HA_EXPIRE_AFTER)] = this->expireAfter; doc[FPSTR(HA_EXPIRE_AFTER)] = this->expireAfter;
doc.shrinkToFit(); doc.shrinkToFit();
return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_k_factor")).c_str(), doc); return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_shift")).c_str(), doc);
} }
bool publishInputEquithermFactorT(bool enabledByDefault = true) { bool publishInputEquithermTargetDiffFactor(bool enabledByDefault = true) {
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][0][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->settingsTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_TOPIC)] = this->settingsTopic.c_str();
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.pid.enabled, 'offline', 'online') }}"); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.pid.enabled, 'offline', 'online') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("equitherm_t")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("equitherm_target_diff_factor"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_NUMBER), F("equitherm_t")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_NAME)] = F("Equitherm factor T"); doc[FPSTR(HA_NAME)] = F("Equitherm target diff factor");
doc[FPSTR(HA_ICON)] = F("mdi:alpha-t-circle-outline"); doc[FPSTR(HA_ICON)] = F("mdi:chart-timeline-variant-shimmer");
doc[FPSTR(HA_STATE_TOPIC)] = this->settingsTopic.c_str(); doc[FPSTR(HA_STATE_TOPIC)] = this->settingsTopic.c_str();
doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.equitherm.t_factor|float(0)|round(2) }}"); doc[FPSTR(HA_VALUE_TEMPLATE)] = F("{{ value_json.equitherm.targetDiffFactor|float(0)|round(3) }}");
doc[FPSTR(HA_COMMAND_TOPIC)] = this->setSettingsTopic.c_str(); doc[FPSTR(HA_COMMAND_TOPIC)] = this->setSettingsTopic.c_str();
doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"equitherm\": {\"t_factor\" : {{ value }}}}"); doc[FPSTR(HA_COMMAND_TEMPLATE)] = F("{\"equitherm\": {\"targetDiffFactor\" : {{ value }}}}");
doc[FPSTR(HA_MIN)] = 0; doc[FPSTR(HA_MIN)] = 0;
doc[FPSTR(HA_MAX)] = 10; doc[FPSTR(HA_MAX)] = 10;
doc[FPSTR(HA_STEP)] = 0.01f; doc[FPSTR(HA_STEP)] = 0.001f;
doc[FPSTR(HA_MODE)] = FPSTR(HA_MODE_BOX); doc[FPSTR(HA_MODE)] = FPSTR(HA_MODE_BOX);
doc[FPSTR(HA_EXPIRE_AFTER)] = this->expireAfter; doc[FPSTR(HA_EXPIRE_AFTER)] = this->expireAfter;
doc.shrinkToFit(); doc.shrinkToFit();
return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_t_factor")).c_str(), doc); return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_NUMBER), F("equitherm_target_diff_factor")).c_str(), doc);
} }
bool publishStatusState(bool enabledByDefault = true) { bool publishStatusState(bool enabledByDefault = true) {
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("status")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("status"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), F("status")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("problem"); doc[FPSTR(HA_DEVICE_CLASS)] = F("problem");
doc[FPSTR(HA_NAME)] = F("Status"); doc[FPSTR(HA_NAME)] = F("Status");
@@ -938,8 +958,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("emergency")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("emergency"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), F("emergency")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("problem"); doc[FPSTR(HA_DEVICE_CLASS)] = F("problem");
doc[FPSTR(HA_NAME)] = F("Emergency"); doc[FPSTR(HA_NAME)] = F("Emergency");
@@ -956,8 +976,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("ot_status")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("ot_status"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), F("ot_status")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("connectivity"); doc[FPSTR(HA_DEVICE_CLASS)] = F("connectivity");
doc[FPSTR(HA_NAME)] = F("Opentherm status"); doc[FPSTR(HA_NAME)] = F("Opentherm status");
@@ -977,8 +997,9 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true);
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("heating")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("heating"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), F("heating")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
//doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("running"); doc[FPSTR(HA_DEVICE_CLASS)] = F("running");
doc[FPSTR(HA_NAME)] = F("Heating"); doc[FPSTR(HA_NAME)] = F("Heating");
doc[FPSTR(HA_ICON)] = F("mdi:radiator"); doc[FPSTR(HA_ICON)] = F("mdi:radiator");
@@ -997,8 +1018,9 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true);
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("dhw")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("dhw"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), F("dhw")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
//doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("running"); doc[FPSTR(HA_DEVICE_CLASS)] = F("running");
doc[FPSTR(HA_NAME)] = F("DHW"); doc[FPSTR(HA_NAME)] = F("DHW");
doc[FPSTR(HA_ICON)] = F("mdi:faucet"); doc[FPSTR(HA_ICON)] = F("mdi:faucet");
@@ -1017,8 +1039,9 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true);
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("flame")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("flame"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), F("flame")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
//doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("running"); doc[FPSTR(HA_DEVICE_CLASS)] = F("running");
doc[FPSTR(HA_NAME)] = F("Flame"); doc[FPSTR(HA_NAME)] = F("Flame");
doc[FPSTR(HA_ICON)] = F("mdi:gas-burner"); doc[FPSTR(HA_ICON)] = F("mdi:gas-burner");
@@ -1037,8 +1060,8 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true);
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("fault")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("fault"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), F("fault")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("problem"); doc[FPSTR(HA_DEVICE_CLASS)] = F("problem");
doc[FPSTR(HA_NAME)] = F("Fault"); doc[FPSTR(HA_NAME)] = F("Fault");
@@ -1058,8 +1081,8 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = JsonString(AVAILABILITY_OT_CONN, true);
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC)); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC)); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("problem"); doc[FPSTR(HA_DEVICE_CLASS)] = F("problem");
doc[FPSTR(HA_NAME)] = F("Diagnostic"); doc[FPSTR(HA_NAME)] = F("Diagnostic");
@@ -1076,8 +1099,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("ext_pump")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("ext_pump"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BINARY_SENSOR), F("ext_pump")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("running"); doc[FPSTR(HA_DEVICE_CLASS)] = F("running");
doc[FPSTR(HA_NAME)] = F("External pump"); doc[FPSTR(HA_NAME)] = F("External pump");
@@ -1097,8 +1120,8 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.slave.connected and value_json.slave.fault.active, 'online', 'offline') }}"); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.slave.connected and value_json.slave.fault.active, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("fault_code")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("fault_code"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_SENSOR), F("fault_code")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_NAME)] = F("Fault code"); doc[FPSTR(HA_NAME)] = F("Fault code");
doc[FPSTR(HA_ICON)] = F("mdi:cog-box"); doc[FPSTR(HA_ICON)] = F("mdi:cog-box");
@@ -1117,8 +1140,8 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.slave.connected and value_json.slave.fault.active or value_json.slave.diag.active, 'online', 'offline') }}"); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.slave.connected and value_json.slave.fault.active or value_json.slave.diag.active, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("diagnostic_code")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("diagnostic_code"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_SENSOR), F("diagnostic_code")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_NAME)] = F("Diagnostic code"); doc[FPSTR(HA_NAME)] = F("Diagnostic code");
doc[FPSTR(HA_ICON)] = F("mdi:information-box"); doc[FPSTR(HA_ICON)] = F("mdi:information-box");
@@ -1134,8 +1157,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(FPSTR(S_RSSI)); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(FPSTR(S_RSSI));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_SENSOR), FPSTR(S_RSSI)); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("signal_strength"); doc[FPSTR(HA_DEVICE_CLASS)] = F("signal_strength");
doc[FPSTR(HA_STATE_CLASS)] = FPSTR(HA_STATE_CLASS_MEASUREMENT); doc[FPSTR(HA_STATE_CLASS)] = FPSTR(HA_STATE_CLASS_MEASUREMENT);
@@ -1154,8 +1177,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("uptime")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("uptime"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_SENSOR), F("uptime")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_DIAGNOSTIC);
doc[FPSTR(HA_DEVICE_CLASS)] = F("duration"); doc[FPSTR(HA_DEVICE_CLASS)] = F("duration");
doc[FPSTR(HA_STATE_CLASS)] = F("total_increasing"); doc[FPSTR(HA_STATE_CLASS)] = F("total_increasing");
@@ -1171,12 +1194,12 @@ public:
} }
bool publishClimateHeating(UnitSystem unit = UnitSystem::METRIC, uint8_t minTemp = 20, uint8_t maxTemp = 90, bool enabledByDefault = true) { bool publishClimateHeating(UnitSystem unit = UnitSystem::METRIC, byte minTemp = 20, byte maxTemp = 90, bool enabledByDefault = true) {
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("heating")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("heating"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_CLIMATE), F("heating")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_NAME)] = F("Heating"); doc[FPSTR(HA_NAME)] = F("Heating");
doc[FPSTR(HA_ICON)] = F("mdi:radiator"); doc[FPSTR(HA_ICON)] = F("mdi:radiator");
@@ -1223,12 +1246,12 @@ public:
return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_CLIMATE), F("heating"), '_').c_str(), doc); return this->publish(this->makeConfigTopic(FPSTR(HA_ENTITY_CLIMATE), F("heating"), '_').c_str(), doc);
} }
bool publishClimateDhw(UnitSystem unit = UnitSystem::METRIC, uint8_t minTemp = 40, uint8_t maxTemp = 60, bool enabledByDefault = true) { bool publishClimateDhw(UnitSystem unit = UnitSystem::METRIC, byte minTemp = 40, byte maxTemp = 60, bool enabledByDefault = true) {
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("dhw")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("dhw"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_CLIMATE), F("dhw")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_NAME)] = F("DHW"); doc[FPSTR(HA_NAME)] = F("DHW");
doc[FPSTR(HA_ICON)] = F("mdi:faucet"); doc[FPSTR(HA_ICON)] = F("mdi:faucet");
@@ -1272,8 +1295,8 @@ public:
JsonDocument doc; JsonDocument doc;
doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str(); doc[FPSTR(HA_AVAILABILITY)][FPSTR(HA_TOPIC)] = this->statusTopic.c_str();
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(FPSTR(S_RESTART)); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(FPSTR(S_RESTART));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BUTTON), FPSTR(S_RESTART)); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_RESTART); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_RESTART);
doc[FPSTR(HA_NAME)] = F("Restart"); doc[FPSTR(HA_NAME)] = F("Restart");
@@ -1292,8 +1315,8 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.slave.fault.active, 'online', 'offline') }}"); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.slave.fault.active, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("reset_fault")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("reset_fault"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BUTTON), F("reset_fault")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_RESTART); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_RESTART);
doc[FPSTR(HA_NAME)] = F("Reset fault"); doc[FPSTR(HA_NAME)] = F("Reset fault");
@@ -1312,8 +1335,8 @@ public:
doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.slave.diag.active, 'online', 'offline') }}"); doc[FPSTR(HA_AVAILABILITY)][1][FPSTR(HA_VALUE_TEMPLATE)] = F("{{ iif(value_json.slave.diag.active, 'online', 'offline') }}");
doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all"); doc[FPSTR(HA_AVAILABILITY_MODE)] = F("all");
doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault; doc[FPSTR(HA_ENABLED_BY_DEFAULT)] = enabledByDefault;
doc[FPSTR(HA_UNIQUE_ID)] = this->getUniqueIdWithPrefix(F("reset_diagnostic")); doc[FPSTR(HA_UNIQUE_ID)] = this->getObjectIdWithPrefix(F("reset_diagnostic"));
doc[FPSTR(HA_DEFAULT_ENTITY_ID)] = this->getEntityIdWithPrefix(FPSTR(HA_ENTITY_BUTTON), F("reset_diagnostic")); doc[FPSTR(HA_OBJECT_ID)] = doc[FPSTR(HA_UNIQUE_ID)];
doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG); doc[FPSTR(HA_ENTITY_CATEGORY)] = FPSTR(HA_ENTITY_CATEGORY_CONFIG);
doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_RESTART); doc[FPSTR(HA_DEVICE_CLASS)] = FPSTR(S_RESTART);
doc[FPSTR(HA_NAME)] = F("Reset diagnostic"); doc[FPSTR(HA_NAME)] = F("Reset diagnostic");

View File

@@ -51,10 +51,6 @@ protected:
return "Main"; return "Main";
} }
uint32_t getTaskStackSize() override {
return 6000;
}
/*BaseType_t getTaskCore() override { /*BaseType_t getTaskCore() override {
return 1; return 1;
}*/ }*/
@@ -613,12 +609,7 @@ protected:
if (GPIO_IS_VALID(settings.externalPump.gpio)) { if (GPIO_IS_VALID(settings.externalPump.gpio)) {
configuredGpio = settings.externalPump.gpio; configuredGpio = settings.externalPump.gpio;
pinMode(configuredGpio, OUTPUT); pinMode(configuredGpio, OUTPUT);
digitalWrite( digitalWrite(configuredGpio, LOW);
configuredGpio,
settings.externalPump.invertState
? HIGH
: LOW
);
} else if (configuredGpio != GPIO_IS_NOT_CONFIGURED) { } else if (configuredGpio != GPIO_IS_NOT_CONFIGURED) {
configuredGpio = GPIO_IS_NOT_CONFIGURED; configuredGpio = GPIO_IS_NOT_CONFIGURED;
@@ -646,12 +637,7 @@ protected:
if (!settings.externalPump.use) { if (!settings.externalPump.use) {
if (vars.externalPump.state) { if (vars.externalPump.state) {
digitalWrite( digitalWrite(configuredGpio, LOW);
configuredGpio,
settings.externalPump.invertState
? HIGH
: LOW
);
vars.externalPump.state = false; vars.externalPump.state = false;
vars.externalPump.lastEnabledTime = millis(); vars.externalPump.lastEnabledTime = millis();
@@ -664,12 +650,7 @@ protected:
if (vars.externalPump.state && !this->heatingEnabled) { if (vars.externalPump.state && !this->heatingEnabled) {
if (this->extPumpStartReason == MainTask::PumpStartReason::HEATING && millis() - this->heatingDisabledTime > (settings.externalPump.postCirculationTime * 1000u)) { if (this->extPumpStartReason == MainTask::PumpStartReason::HEATING && millis() - this->heatingDisabledTime > (settings.externalPump.postCirculationTime * 1000u)) {
digitalWrite( digitalWrite(configuredGpio, LOW);
configuredGpio,
settings.externalPump.invertState
? HIGH
: LOW
);
vars.externalPump.state = false; vars.externalPump.state = false;
vars.externalPump.lastEnabledTime = millis(); vars.externalPump.lastEnabledTime = millis();
@@ -677,12 +658,7 @@ protected:
Log.sinfoln(FPSTR(L_EXTPUMP), F("Disabled: expired post circulation time")); Log.sinfoln(FPSTR(L_EXTPUMP), F("Disabled: expired post circulation time"));
} else if (this->extPumpStartReason == MainTask::PumpStartReason::ANTISTUCK && millis() - this->externalPumpStartTime >= (settings.externalPump.antiStuckTime * 1000u)) { } else if (this->extPumpStartReason == MainTask::PumpStartReason::ANTISTUCK && millis() - this->externalPumpStartTime >= (settings.externalPump.antiStuckTime * 1000u)) {
digitalWrite( digitalWrite(configuredGpio, LOW);
configuredGpio,
settings.externalPump.invertState
? HIGH
: LOW
);
vars.externalPump.state = false; vars.externalPump.state = false;
vars.externalPump.lastEnabledTime = millis(); vars.externalPump.lastEnabledTime = millis();
@@ -698,12 +674,7 @@ protected:
this->externalPumpStartTime = millis(); this->externalPumpStartTime = millis();
this->extPumpStartReason = MainTask::PumpStartReason::HEATING; this->extPumpStartReason = MainTask::PumpStartReason::HEATING;
digitalWrite( digitalWrite(configuredGpio, HIGH);
configuredGpio,
settings.externalPump.invertState
? LOW
: HIGH
);
Log.sinfoln(FPSTR(L_EXTPUMP), F("Enabled: heating on")); Log.sinfoln(FPSTR(L_EXTPUMP), F("Enabled: heating on"));
@@ -712,12 +683,7 @@ protected:
this->externalPumpStartTime = millis(); this->externalPumpStartTime = millis();
this->extPumpStartReason = MainTask::PumpStartReason::ANTISTUCK; this->extPumpStartReason = MainTask::PumpStartReason::ANTISTUCK;
digitalWrite( digitalWrite(configuredGpio, HIGH);
configuredGpio,
settings.externalPump.invertState
? LOW
: HIGH
);
Log.sinfoln(FPSTR(L_EXTPUMP), F("Enabled: anti stuck")); Log.sinfoln(FPSTR(L_EXTPUMP), F("Enabled: anti stuck"));
} }

View File

@@ -502,9 +502,10 @@ protected:
// equitherm // equitherm
this->haHelper->publishSwitchEquitherm(); this->haHelper->publishSwitchEquitherm();
this->haHelper->publishInputEquithermFactorN(false); this->haHelper->publishInputEquithermSlope(false);
this->haHelper->publishInputEquithermFactorK(false); this->haHelper->publishInputEquithermExponent(false);
this->haHelper->publishInputEquithermFactorT(false); this->haHelper->publishInputEquithermShift(false);
this->haHelper->publishInputEquithermTargetDiffFactor(false);
// states // states
this->haHelper->publishStatusState(); this->haHelper->publishStatusState();
@@ -557,7 +558,7 @@ protected:
} }
bool publishNonStaticHaEntities(bool force = false) { bool publishNonStaticHaEntities(bool force = false) {
static uint8_t _heatingMinTemp, _heatingMaxTemp, _dhwMinTemp, _dhwMaxTemp = 0; static byte _heatingMinTemp, _heatingMaxTemp, _dhwMinTemp, _dhwMaxTemp = 0;
static bool _indoorTempControl, _dhwSupport = false; static bool _indoorTempControl, _dhwSupport = false;
bool published = false; bool published = false;

View File

@@ -19,8 +19,8 @@ protected:
CustomOpenTherm* instance = nullptr; CustomOpenTherm* instance = nullptr;
unsigned long instanceCreatedTime = 0; unsigned long instanceCreatedTime = 0;
uint8_t instanceInGpio = 0; byte instanceInGpio = 0;
uint8_t instanceOutGpio = 0; byte instanceOutGpio = 0;
bool initialized = false; bool initialized = false;
unsigned long connectedTime = 0; unsigned long connectedTime = 0;
unsigned long disconnectedTime = 0; unsigned long disconnectedTime = 0;
@@ -31,16 +31,12 @@ protected:
unsigned long heatingSetTempTime = 0; unsigned long heatingSetTempTime = 0;
unsigned long dhwSetTempTime = 0; unsigned long dhwSetTempTime = 0;
unsigned long ch2SetTempTime = 0; unsigned long ch2SetTempTime = 0;
uint8_t configuredRxLedGpio = GPIO_IS_NOT_CONFIGURED; byte configuredRxLedGpio = GPIO_IS_NOT_CONFIGURED;
#if defined(ARDUINO_ARCH_ESP32) #if defined(ARDUINO_ARCH_ESP32)
const char* getTaskName() override { const char* getTaskName() override {
return "OpenTherm"; return "OpenTherm";
} }
uint32_t getTaskStackSize() override {
return 7500;
}
BaseType_t getTaskCore() override { BaseType_t getTaskCore() override {
return 1; return 1;
@@ -94,7 +90,7 @@ protected:
Log.sinfoln(FPSTR(L_OT), F("Started. GPIO IN: %hhu, GPIO OUT: %hhu"), settings.opentherm.inGpio, settings.opentherm.outGpio); Log.sinfoln(FPSTR(L_OT), F("Started. GPIO IN: %hhu, GPIO OUT: %hhu"), settings.opentherm.inGpio, settings.opentherm.outGpio);
this->instance->setAfterSendRequestCallback([this](unsigned long request, unsigned long response, OpenThermResponseStatus status, uint8_t attempt) { this->instance->setAfterSendRequestCallback([this](unsigned long request, unsigned long response, OpenThermResponseStatus status, byte attempt) {
Log.sverboseln( Log.sverboseln(
FPSTR(L_OT), FPSTR(L_OT),
F("ID: %4d Request: %8lx Response: %8lx Msg type: %s Attempt: %2d Status: %s"), F("ID: %4d Request: %8lx Response: %8lx Msg type: %s Attempt: %2d Status: %s"),
@@ -240,7 +236,7 @@ protected:
vars.slave.heating.active = CustomOpenTherm::isCentralHeatingActive(response); vars.slave.heating.active = CustomOpenTherm::isCentralHeatingActive(response);
vars.slave.dhw.active = settings.opentherm.options.dhwSupport ? CustomOpenTherm::isHotWaterActive(response) : false; vars.slave.dhw.active = settings.opentherm.options.dhwSupport ? CustomOpenTherm::isHotWaterActive(response) : false;
vars.slave.flame = CustomOpenTherm::isFlameOn(response); vars.slave.flame = CustomOpenTherm::isFlameOn(response);
vars.slave.cooling.active = CustomOpenTherm::isCoolingActive(response); vars.slave.cooling = CustomOpenTherm::isCoolingActive(response);
vars.slave.ch2.active = CustomOpenTherm::isCh2Active(response); vars.slave.ch2.active = CustomOpenTherm::isCh2Active(response);
vars.slave.fault.active = CustomOpenTherm::isFault(response); vars.slave.fault.active = CustomOpenTherm::isFault(response);
@@ -254,7 +250,7 @@ protected:
Log.snoticeln( Log.snoticeln(
FPSTR(L_OT), F("Received boiler status. Heating: %hhu; DHW: %hhu; flame: %hhu; cooling: %hhu; channel 2: %hhu; fault: %hhu; diag: %hhu"), FPSTR(L_OT), F("Received boiler status. Heating: %hhu; DHW: %hhu; flame: %hhu; cooling: %hhu; channel 2: %hhu; fault: %hhu; diag: %hhu"),
vars.slave.heating.active, vars.slave.dhw.active, vars.slave.heating.active, vars.slave.dhw.active,
vars.slave.flame, vars.slave.cooling.active, vars.slave.ch2.active, vars.slave.fault.active, vars.slave.diag.active vars.slave.flame, vars.slave.cooling, vars.slave.ch2.active, vars.slave.fault.active, vars.slave.diag.active
); );
} }
@@ -322,8 +318,6 @@ protected:
vars.slave.dhw.enabled = false; vars.slave.dhw.enabled = false;
vars.slave.dhw.active = false; vars.slave.dhw.active = false;
vars.slave.flame = false; vars.slave.flame = false;
vars.slave.cooling.active = false;
vars.slave.cooling.setpoint = 0;
vars.slave.fault.active = false; vars.slave.fault.active = false;
vars.slave.fault.code = 0; vars.slave.fault.code = 0;
vars.slave.diag.active = false; vars.slave.diag.active = false;
@@ -694,22 +688,6 @@ protected:
this->prevUpdateNonEssentialVars = millis(); this->prevUpdateNonEssentialVars = millis();
} }
// Set cooling setpoint = heating max modulation
if (settings.opentherm.options.coolingSupport) {
if (this->setCoolingSetpoint(settings.heating.maxModulation)) {
Log.snoticeln(
FPSTR(L_OT), F("Set cooling setpoint: %hhu%% (response: %hhu%%)"),
settings.heating.maxModulation, vars.slave.cooling.setpoint
);
} else {
Log.swarningln(
FPSTR(L_OT), F("Failed set cooling setpoint: %hhu%% (response: %hhu%%)"),
settings.heating.maxModulation, vars.slave.cooling.setpoint
);
}
}
// Set max modulation level // Set max modulation level
uint8_t targetMaxModulation = vars.slave.modulation.max; uint8_t targetMaxModulation = vars.slave.modulation.max;
if (vars.slave.heating.active) { if (vars.slave.heating.active) {
@@ -1590,26 +1568,6 @@ protected:
return CustomOpenTherm::getUInt(response) == request; return CustomOpenTherm::getUInt(response) == request;
} }
bool setCoolingSetpoint(const uint8_t value) {
const unsigned int request = CustomOpenTherm::toFloat(value);
const unsigned long response = this->instance->sendRequest(CustomOpenTherm::buildRequest(
OpenThermRequestType::WRITE_DATA,
OpenThermMessageID::CoolingControl,
request
));
if (!CustomOpenTherm::isValidResponse(response)) {
return false;
} else if (!CustomOpenTherm::isValidResponseId(response, OpenThermMessageID::CoolingControl)) {
return false;
}
vars.slave.cooling.setpoint = CustomOpenTherm::getFloat(response);
return CustomOpenTherm::getUInt(response) == request;
}
bool setMaxModulationLevel(const uint8_t value) { bool setMaxModulationLevel(const uint8_t value) {
const unsigned int request = CustomOpenTherm::toFloat(value); const unsigned int request = CustomOpenTherm::toFloat(value);
const unsigned long response = this->instance->sendRequest(CustomOpenTherm::buildRequest( const unsigned long response = this->instance->sendRequest(CustomOpenTherm::buildRequest(

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,5 @@
#include <Equitherm.h>
#include <GyverPID.h> #include <GyverPID.h>
Equitherm etRegulator;
GyverPID pidRegulator(0, 0, 0); GyverPID pidRegulator(0, 0, 0);
@@ -21,10 +19,6 @@ protected:
const char* getTaskName() override { const char* getTaskName() override {
return "Regulator"; return "Regulator";
} }
uint32_t getTaskStackSize() override {
return 5000;
}
/*BaseType_t getTaskCore() override { /*BaseType_t getTaskCore() override {
return 1; return 1;
@@ -150,39 +144,32 @@ protected:
// if use equitherm // if use equitherm
if (settings.equitherm.enabled) { if (settings.equitherm.enabled) {
unsigned short minTemp = settings.heating.minTemp; float tempDelta = settings.heating.target - vars.master.heating.outdoorTemp;
unsigned short maxTemp = settings.heating.maxTemp; float maxPoint = settings.heating.target - (
float targetTemp = settings.heating.target; settings.heating.maxTemp - settings.heating.target
float indoorTemp = vars.master.heating.indoorTemp; ) / settings.equitherm.slope;
float outdoorTemp = vars.master.heating.outdoorTemp;
if (settings.system.unitSystem == UnitSystem::IMPERIAL) { float sf = (settings.heating.maxTemp - settings.heating.target) / pow(
minTemp = f2c(minTemp); settings.heating.target - maxPoint,
maxTemp = f2c(maxTemp); 1.0f / settings.equitherm.exponent
targetTemp = f2c(targetTemp); );
indoorTemp = f2c(indoorTemp); float etResult = settings.heating.target + settings.equitherm.shift + sf * (
outdoorTemp = f2c(outdoorTemp); tempDelta >= 0
? pow(tempDelta, 1.0f / settings.equitherm.exponent)
: -(pow(-(tempDelta), 1.0f / settings.equitherm.exponent))
);
// add diff
if (this->indoorSensorsConnected && !settings.pid.enabled && !settings.heating.turbo) {
etResult += constrain(
settings.heating.target - vars.master.heating.indoorTemp,
-3.0f,
3.0f
) * settings.equitherm.targetDiffFactor;
} }
if (!this->indoorSensorsConnected || settings.pid.enabled) { // limit
etRegulator.Kt = 0.0f; etResult = constrain(etResult, settings.heating.minTemp, settings.heating.maxTemp);
etRegulator.indoorTemp = 0.0f;
} else {
etRegulator.Kt = settings.heating.turbo ? 0.0f : settings.equitherm.t_factor;
etRegulator.indoorTemp = indoorTemp;
}
etRegulator.setLimits(minTemp, maxTemp);
etRegulator.Kn = settings.equitherm.n_factor;
etRegulator.Kk = settings.equitherm.k_factor;
etRegulator.targetTemp = targetTemp;
etRegulator.outdoorTemp = outdoorTemp;
float etResult = etRegulator.getResult();
if (settings.system.unitSystem == UnitSystem::IMPERIAL) {
etResult = c2f(etResult);
}
if (fabsf(prevEtResult - etResult) > 0.09f) { if (fabsf(prevEtResult - etResult) > 0.09f) {
prevEtResult = etResult; prevEtResult = etResult;
@@ -217,8 +204,7 @@ protected:
}*/ }*/
float error = pidRegulator.setpoint - pidRegulator.input; float error = pidRegulator.setpoint - pidRegulator.input;
bool hasDeadband = settings.pid.deadband.enabled bool hasDeadband = (error > -(settings.pid.deadband.thresholdHigh))
&& (error > -(settings.pid.deadband.thresholdHigh))
&& (error < settings.pid.deadband.thresholdLow); && (error < settings.pid.deadband.thresholdLow);
if (hasDeadband) { if (hasDeadband) {

View File

@@ -149,7 +149,7 @@ public:
static int16_t getIdByName(const char* name) { static int16_t getIdByName(const char* name) {
if (settings == nullptr) { if (settings == nullptr) {
return -1; return 0;
} }
for (uint8_t id = 0; id <= getMaxSensorId(); id++) { for (uint8_t id = 0; id <= getMaxSensorId(); id++) {
@@ -163,7 +163,7 @@ public:
static int16_t getIdByObjectId(const char* objectId) { static int16_t getIdByObjectId(const char* objectId) {
if (settings == nullptr) { if (settings == nullptr) {
return -1; return 0;
} }
String refObjectId; String refObjectId;
@@ -334,7 +334,7 @@ public:
uint8_t valueId = (uint8_t) valueType; uint8_t valueId = (uint8_t) valueType;
if (!isValidValueId(valueId)) { if (!isValidValueId(valueId)) {
return 0; return false;
} }
float value = 0.0f; float value = 0.0f;

View File

@@ -8,140 +8,6 @@
extern FileData fsSensorsSettings; extern FileData fsSensorsSettings;
#if USE_BLE
class BluetoothScanCallbacks : public NimBLEScanCallbacks {
public:
void onDiscovered(const NimBLEAdvertisedDevice* device) override {
auto& deviceAddress = device->getAddress();
bool found = false;
uint8_t sensorId;
for (sensorId = 0; sensorId <= Sensors::getMaxSensorId(); sensorId++) {
auto& sSensor = Sensors::settings[sensorId];
if (!sSensor.enabled || sSensor.type != Sensors::Type::BLUETOOTH || sSensor.purpose == Sensors::Purpose::NOT_CONFIGURED) {
continue;
}
const auto sensorAddress = NimBLEAddress(sSensor.address, deviceAddress.getType());
if (sensorAddress.isNull() || sensorAddress != deviceAddress) {
continue;
}
found = true;
break;
}
if (!found) {
return;
}
auto& sSensor = Sensors::settings[sensorId];
auto& rSensor = Sensors::results[sensorId];
auto deviceName = device->getName();
auto deviceRssi = device->getRSSI();
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': discovered device %s, name: %s, RSSI: %hhd"),
sensorId, sSensor.name,
deviceAddress.toString().c_str(), deviceName.c_str(), deviceRssi
);
if (!device->haveServiceData()) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': not found service data"),
sensorId, sSensor.name
);
return;
}
auto serviceDataCount = device->getServiceDataCount();
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': found %hhu service data"),
sensorId, sSensor.name, serviceDataCount
);
NimBLEUUID serviceUuid((uint16_t) 0x181A);
auto serviceData = device->getServiceData(serviceUuid);
if (!serviceData.size()) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': NOT found %s env service data"),
sensorId, sSensor.name, serviceUuid.toString().c_str()
);
return;
}
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': found %s env service data"),
sensorId, sSensor.name, serviceUuid.toString().c_str()
);
float temperature, humidity;
uint16_t batteryMv;
uint8_t batteryLevel;
if (serviceData.size() == 13) {
// atc1441 format
// Temperature (2 bytes, big-endian)
temperature = (
(static_cast<uint8_t>(serviceData[6]) << 8) | static_cast<uint8_t>(serviceData[7])
) * 0.1f;
// Humidity (1 byte)
humidity = static_cast<uint8_t>(serviceData[8]);
// Battery mV (2 bytes, big-endian)
batteryMv = (static_cast<uint8_t>(serviceData[10]) << 8) | static_cast<uint8_t>(serviceData[11]);
// Battery level (1 byte)
batteryLevel = static_cast<uint8_t>(serviceData[9]);
} else if (serviceData.size() == 15) {
// custom pvvx format
// Temperature (2 bytes, little-endian)
temperature = (
(static_cast<uint8_t>(serviceData[7]) << 8) | static_cast<uint8_t>(serviceData[6])
) * 0.01f;
// Humidity (2 bytes, little-endian)
humidity = (
(static_cast<uint8_t>(serviceData[9]) << 8) | static_cast<uint8_t>(serviceData[8])
) * 0.01f;
// Battery mV (2 bytes, little-endian)
batteryMv = (static_cast<uint8_t>(serviceData[11]) << 8) | static_cast<uint8_t>(serviceData[10]);
// Battery level (1 byte)
batteryLevel = static_cast<uint8_t>(serviceData[12]);
} else {
// unknown format
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': unknown data format (size: %i)"),
sensorId, sSensor.name, serviceData.size()
);
return;
}
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s', received temp: %.2f; humidity: %.2f, battery voltage: %hu, battery level: %hhu"),
sensorId, sSensor.name,
temperature, humidity, batteryMv, batteryLevel
);
// update data
Sensors::setValueById(sensorId, temperature, Sensors::ValueType::TEMPERATURE, true, true);
Sensors::setValueById(sensorId, humidity, Sensors::ValueType::HUMIDITY, true, true);
Sensors::setValueById(sensorId, batteryLevel, Sensors::ValueType::BATTERY, true, true);
// update rssi
Sensors::setValueById(sensorId, deviceRssi, Sensors::ValueType::RSSI, false, false);
}
};
#endif
class SensorsTask : public LeanTask { class SensorsTask : public LeanTask {
public: public:
SensorsTask(bool _enabled = false, unsigned long _interval = 0) : LeanTask(_enabled, _interval) { SensorsTask(bool _enabled = false, unsigned long _interval = 0) : LeanTask(_enabled, _interval) {
@@ -150,10 +16,6 @@ public:
this->dallasSearchTime.reserve(2); this->dallasSearchTime.reserve(2);
this->dallasPolling.reserve(2); this->dallasPolling.reserve(2);
this->dallasLastPollingTime.reserve(2); this->dallasLastPollingTime.reserve(2);
#if USE_BLE
this->pBLEScanCallbacks = new BluetoothScanCallbacks();
#endif
} }
~SensorsTask() { ~SensorsTask() {
@@ -162,17 +24,16 @@ public:
this->dallasSearchTime.clear(); this->dallasSearchTime.clear();
this->dallasPolling.clear(); this->dallasPolling.clear();
this->dallasLastPollingTime.clear(); this->dallasLastPollingTime.clear();
#if USE_BLE
delete this->pBLEScanCallbacks;
#endif
} }
protected: protected:
const unsigned int disconnectedTimeout = 180000u; const unsigned int disconnectedTimeout = 120000;
const unsigned short dallasSearchInterval = 60000u; const unsigned short dallasSearchInterval = 60000;
const unsigned short dallasPollingInterval = 10000u; const unsigned short dallasPollingInterval = 10000;
const unsigned short globalPollingInterval = 15000u; const unsigned short globalPollingInterval = 15000;
#if USE_BLE
const unsigned int bleSetDtInterval = 7200000;
#endif
std::unordered_map<uint8_t, OneWire> owInstances; std::unordered_map<uint8_t, OneWire> owInstances;
std::unordered_map<uint8_t, DallasTemperature> dallasInstances; std::unordered_map<uint8_t, DallasTemperature> dallasInstances;
@@ -180,9 +41,8 @@ protected:
std::unordered_map<uint8_t, bool> dallasPolling; std::unordered_map<uint8_t, bool> dallasPolling;
std::unordered_map<uint8_t, unsigned long> dallasLastPollingTime; std::unordered_map<uint8_t, unsigned long> dallasLastPollingTime;
#if USE_BLE #if USE_BLE
NimBLEScan* pBLEScan = nullptr; std::unordered_map<uint8_t, bool> bleSubscribed;
BluetoothScanCallbacks* pBLEScanCallbacks = nullptr; std::unordered_map<uint8_t, unsigned long> bleLastSetDtTime;
bool activeScanBle = false;
#endif #endif
unsigned long globalLastPollingTime = 0; unsigned long globalLastPollingTime = 0;
@@ -191,10 +51,6 @@ protected:
return "Sensors"; return "Sensors";
} }
uint32_t getTaskStackSize() override {
return 7500;
}
BaseType_t getTaskCore() override { BaseType_t getTaskCore() override {
// https://github.com/h2zero/NimBLE-Arduino/issues/676 // https://github.com/h2zero/NimBLE-Arduino/issues/676
#if USE_BLE && defined(CONFIG_BT_NIMBLE_PINNED_TO_CORE) #if USE_BLE && defined(CONFIG_BT_NIMBLE_PINNED_TO_CORE)
@@ -235,7 +91,8 @@ protected:
this->yield(); this->yield();
#if USE_BLE #if USE_BLE
scanBleSensors(); cleanBleInstances();
pollingBleSensors();
this->yield(); this->yield();
#endif #endif
@@ -528,7 +385,7 @@ protected:
continue; continue;
} }
const float sensorResistance = value > 1 const float sensorResistance = value > 0.001f
? DEFAULT_NTC_REF_RESISTANCE / (DEFAULT_NTC_VREF / (float) value - 1.0f) ? DEFAULT_NTC_REF_RESISTANCE / (DEFAULT_NTC_VREF / (float) value - 1.0f)
: 0.0f; : 0.0f;
const float rawTemp = 1.0f / ( const float rawTemp = 1.0f / (
@@ -547,71 +404,572 @@ protected:
} }
#if USE_BLE #if USE_BLE
void scanBleSensors() { void cleanBleInstances() {
if (!Sensors::getAmountByType(Sensors::Type::BLUETOOTH, true)) { #if USE_BLE
if (NimBLEDevice::isInitialized()) { if (!NimBLEDevice::isInitialized()) {
if (this->pBLEScan != nullptr) {
if (this->pBLEScan->isScanning()) {
this->pBLEScan->stop();
} else {
this->pBLEScan = nullptr;
}
}
if (this->pBLEScan == nullptr) {
if (NimBLEDevice::deinit(true)) {
Log.sinfoln(FPSTR(L_SENSORS_BLE), F("Deinitialized"));
} else {
Log.swarningln(FPSTR(L_SENSORS_BLE), F("Unable to deinitialize!"));
}
}
}
return; return;
} }
for (auto client : NimBLEDevice::getConnectedClients()) {
auto address = client->getPeerAddress();
bool used = false;
for (uint8_t sensorId = 0; sensorId <= Sensors::getMaxSensorId(); sensorId++) {
auto& sSensor = Sensors::settings[sensorId];
if (!sSensor.enabled || sSensor.type != Sensors::Type::BLUETOOTH || sSensor.purpose == Sensors::Purpose::NOT_CONFIGURED) {
continue;
}
auto pAddress = address.getVal();
uint8_t addr[] = {
pAddress[5], pAddress[4], pAddress[3],
pAddress[2], pAddress[1], pAddress[0]
};
if (isEqualAddress(addr, sSensor.address, sizeof(addr))) {
used = true;
break;
}
}
if (!used) {
Log.sinfoln(
FPSTR(L_SENSORS_BLE), F("Deleted unused client connected to %s"),
address.toString().c_str()
);
NimBLEDevice::deleteClient(client);
}
}
#endif
}
void pollingBleSensors() {
if (!NimBLEDevice::isInitialized() && millis() > 5000) { if (!NimBLEDevice::isInitialized() && millis() > 5000) {
Log.sinfoln(FPSTR(L_SENSORS_BLE), F("Initialized")); Log.sinfoln(FPSTR(L_SENSORS_BLE), F("Initialized"));
NimBLEDevice::init(""); BLEDevice::init("");
NimBLEDevice::setPower(9);
#ifdef ESP_PWR_LVL_P20
NimBLEDevice::setPower(ESP_PWR_LVL_P20);
#elifdef ESP_PWR_LVL_P9
NimBLEDevice::setPower(ESP_PWR_LVL_P9);
#endif
} }
if (this->pBLEScan == nullptr) { for (uint8_t sensorId = 0; sensorId <= Sensors::getMaxSensorId(); sensorId++) {
this->pBLEScan = NimBLEDevice::getScan(); auto& sSensor = Sensors::settings[sensorId];
this->pBLEScan->setScanCallbacks(this->pBLEScanCallbacks); auto& rSensor = Sensors::results[sensorId];
#if MYNEWT_VAL(BLE_EXT_ADV)
this->pBLEScan->setPhy(NimBLEScan::Phy::SCAN_ALL); if (!sSensor.enabled || sSensor.type != Sensors::Type::BLUETOOTH || sSensor.purpose == Sensors::Purpose::NOT_CONFIGURED) {
#endif continue;
this->pBLEScan->setDuplicateFilter(false); }
this->pBLEScan->setMaxResults(0);
this->pBLEScan->setInterval(10000);
this->pBLEScan->setWindow(10000);
Log.sinfoln(FPSTR(L_SENSORS_BLE), F("Scanning initialized")); auto client = this->getBleClient(sensorId);
if (client == nullptr) {
continue;
}
if (!client->isConnected()) {
this->bleSubscribed[sensorId] = false;
this->bleLastSetDtTime[sensorId] = 0;
if (client->connect()) {
Log.sinfoln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': connected to %s"),
sensorId, sSensor.name, client->getPeerAddress().toString().c_str()
);
} else {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': failed connecting to %s"),
sensorId, sSensor.name, client->getPeerAddress().toString().c_str()
);
continue;
}
}
if (!this->bleSubscribed[sensorId]) {
if (this->subscribeToBleDevice(sensorId, client)) {
this->bleSubscribed[sensorId] = true;
} else {
this->bleSubscribed[sensorId] = false;
client->disconnect();
continue;
}
}
// Mark connected
Sensors::setConnectionStatusById(sensorId, true, true);
if (!this->bleLastSetDtTime[sensorId] || millis() - this->bleLastSetDtTime[sensorId] > this->bleSetDtInterval) {
struct tm ti;
if (getLocalTime(&ti)) {
if (this->setDateOnBleSensor(client, &ti)) {
Log.sinfoln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s', successfully set date: %02d.%02d.%04d %02d:%02d:%02d"),
sensorId, sSensor.name,
ti.tm_mday, ti.tm_mon + 1, ti.tm_year + 1900, ti.tm_hour, ti.tm_min, ti.tm_sec
);
} else {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s', failed set date: %02d.%02d.%04d %02d:%02d:%02d"),
sensorId, sSensor.name,
ti.tm_mday, ti.tm_mon + 1, ti.tm_year + 1900, ti.tm_hour, ti.tm_min, ti.tm_sec
);
}
this->bleLastSetDtTime[sensorId] = millis();
}
}
}
}
NimBLEClient* getBleClient(const uint8_t sensorId) {
if (!NimBLEDevice::isInitialized()) {
return nullptr;
} }
if (!this->pBLEScan->isScanning()) { auto& sSensor = Sensors::settings[sensorId];
this->activeScanBle = !this->activeScanBle; auto& rSensor = Sensors::results[sensorId];
this->pBLEScan->setActiveScan(this->activeScanBle);
if (this->pBLEScan->start(30000, false, false)) { if (!sSensor.enabled || sSensor.type != Sensors::Type::BLUETOOTH || sSensor.purpose == Sensors::Purpose::NOT_CONFIGURED) {
Log.sinfoln( return nullptr;
FPSTR(L_SENSORS_BLE), }
F("%s scanning started"),
this->activeScanBle ? "Active" : "Passive" uint8_t addr[6] = {
sSensor.address[0], sSensor.address[1], sSensor.address[2],
sSensor.address[3], sSensor.address[4], sSensor.address[5]
};
const auto address = NimBLEAddress(addr, 0);
NimBLEClient* pClient = NimBLEDevice::getClientByPeerAddress(address);
if (pClient == nullptr) {
pClient = NimBLEDevice::getDisconnectedClient();
}
if (pClient == nullptr) {
if (NimBLEDevice::getCreatedClientCount() >= NIMBLE_MAX_CONNECTIONS) {
return nullptr;
}
pClient = NimBLEDevice::createClient();
if (pClient == nullptr) {
return nullptr;
}
/**
* Set initial connection parameters:
* These settings are safe for 3 clients to connect reliably, can go faster if you have less
* connections. Timeout should be a multiple of the interval, minimum is 100ms.
* Min interval: 12 * 1.25ms = 15, Max interval: 12 * 1.25ms = 15, 0 latency, 1000 * 10ms = 10000ms timeout
*/
pClient->setConnectionParams(12, 12, 0, 1000);
pClient->setConnectTimeout(5000);
pClient->setSelfDelete(false, true);
}
if (!pClient->isConnected()) {
pClient->setPeerAddress(address);
}
return pClient;
}
bool subscribeToBleDevice(const uint8_t sensorId, NimBLEClient* pClient) {
auto& sSensor = Sensors::settings[sensorId];
auto pAddress = pClient->getPeerAddress().toString().c_str();
NimBLERemoteService* pService = nullptr;
NimBLERemoteCharacteristic* pChar = nullptr;
// ENV Service (0x181A)
NimBLEUUID serviceUuid((uint16_t) 0x181AU);
pService = pClient->getService(serviceUuid);
if (!pService) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': failed to find env service (%s) on device %s"),
sensorId, sSensor.name, serviceUuid.toString().c_str(), pAddress
);
} else {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': found env service (%s) on device %s"),
sensorId, sSensor.name, serviceUuid.toString().c_str(), pAddress
);
// 0x2A6E - Notify temperature x0.01C (pvvx)
bool tempNotifyCreated = false;
if (!tempNotifyCreated) {
NimBLEUUID charUuid((uint16_t) 0x2A6E);
pChar = pService->getCharacteristic(charUuid);
if (pChar && (pChar->canNotify() || pChar->canIndicate())) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': found temp char (%s) in env service on device %s"),
sensorId, sSensor.name, charUuid.toString().c_str(), pAddress
);
pChar->unsubscribe();
tempNotifyCreated = pChar->subscribe(
pChar->canNotify(),
[sensorId](NimBLERemoteCharacteristic* pChar, uint8_t* pData, size_t length, bool isNotify) {
if (pChar == nullptr) {
return;
}
const NimBLERemoteService* pService = pChar->getRemoteService();
if (pService == nullptr) {
return;
}
NimBLEClient* pClient = pService->getClient();
if (pClient == nullptr) {
return;
}
auto& sSensor = Sensors::settings[sensorId];
if (length != 2) {
Log.swarningln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s': invalid notification data at temp char (%s) on device %s"),
sensorId,
sSensor.name,
pChar->getUUID().toString().c_str(),
pClient->getPeerAddress().toString().c_str()
);
return;
}
float rawTemp = (pChar->getValue<int16_t>() * 0.01f);
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s': received temp: %.2f"),
sensorId, sSensor.name, rawTemp
);
// set temp
Sensors::setValueById(sensorId, rawTemp, Sensors::ValueType::TEMPERATURE, true, true);
// update rssi
Sensors::setValueById(sensorId, pClient->getRssi(), Sensors::ValueType::RSSI, false, false);
}
);
if (tempNotifyCreated) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': subscribed to temp char (%s) in env service on device %s"),
sensorId, sSensor.name,
charUuid.toString().c_str(), pAddress
);
} else {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': failed to subscribe to temp char (%s) in env service on device %s"),
sensorId, sSensor.name,
charUuid.toString().c_str(), pAddress
);
}
}
}
// 0x2A1F - Notify temperature x0.1C (atc1441/pvvx)
if (!tempNotifyCreated) {
NimBLEUUID charUuid((uint16_t) 0x2A1F);
pChar = pService->getCharacteristic(charUuid);
if (pChar && (pChar->canNotify() || pChar->canIndicate())) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': found temp char (%s) in env service on device %s"),
sensorId, sSensor.name, charUuid.toString().c_str(), pAddress
);
pChar->unsubscribe();
tempNotifyCreated = pChar->subscribe(
pChar->canNotify(),
[sensorId](NimBLERemoteCharacteristic* pChar, uint8_t* pData, size_t length, bool isNotify) {
if (pChar == nullptr) {
return;
}
const NimBLERemoteService* pService = pChar->getRemoteService();
if (pService == nullptr) {
return;
}
NimBLEClient* pClient = pService->getClient();
if (pClient == nullptr) {
return;
}
auto& sSensor = Sensors::settings[sensorId];
if (length != 2) {
Log.swarningln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s': invalid notification data at temp char (%s) on device %s"),
sensorId,
sSensor.name,
pChar->getUUID().toString().c_str(),
pClient->getPeerAddress().toString().c_str()
);
return;
}
float rawTemp = (pChar->getValue<int16_t>() * 0.1f);
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s': received temp: %.2f"),
sensorId, sSensor.name, rawTemp
);
// set temp
Sensors::setValueById(sensorId, rawTemp, Sensors::ValueType::TEMPERATURE, true, true);
// update rssi
Sensors::setValueById(sensorId, pClient->getRssi(), Sensors::ValueType::RSSI, false, false);
}
);
if (tempNotifyCreated) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': subscribed to temp char (%s) in env service on device %s"),
sensorId, sSensor.name,
charUuid.toString().c_str(), pAddress
);
} else {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': failed to subscribe to temp char (%s) in env service on device %s"),
sensorId, sSensor.name,
charUuid.toString().c_str(), pAddress
);
}
}
}
if (!tempNotifyCreated) {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': not found supported temp chars in env service on device %s"),
sensorId, sSensor.name, pAddress
);
pClient->disconnect();
return false;
}
// 0x2A6F - Notify about humidity x0.01% (pvvx)
{
bool humidityNotifyCreated = false;
if (!humidityNotifyCreated) {
NimBLEUUID charUuid((uint16_t) 0x2A6F);
pChar = pService->getCharacteristic(charUuid);
if (pChar && (pChar->canNotify() || pChar->canIndicate())) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': found humidity char (%s) in env service on device %s"),
sensorId, sSensor.name, charUuid.toString().c_str(), pAddress
);
pChar->unsubscribe();
humidityNotifyCreated = pChar->subscribe(
pChar->canNotify(),
[sensorId](NimBLERemoteCharacteristic* pChar, uint8_t* pData, size_t length, bool isNotify) {
if (pChar == nullptr) {
return;
}
const NimBLERemoteService* pService = pChar->getRemoteService();
if (pService == nullptr) {
return;
}
NimBLEClient* pClient = pService->getClient();
if (pClient == nullptr) {
return;
}
auto& sSensor = Sensors::settings[sensorId];
if (length != 2) {
Log.swarningln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s': invalid notification data at humidity char (%s) on device %s"),
sensorId,
sSensor.name,
pChar->getUUID().toString().c_str(),
pClient->getPeerAddress().toString().c_str()
);
return;
}
float rawHumidity = (pChar->getValue<uint16_t>() * 0.01f);
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s': received humidity: %.2f"),
sensorId, sSensor.name, rawHumidity
);
// set humidity
Sensors::setValueById(sensorId, rawHumidity, Sensors::ValueType::HUMIDITY, true, true);
// update rssi
Sensors::setValueById(sensorId, pClient->getRssi(), Sensors::ValueType::RSSI, false, false);
}
);
if (humidityNotifyCreated) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': subscribed to humidity char (%s) in env service on device %s"),
sensorId, sSensor.name,
charUuid.toString().c_str(), pAddress
);
} else {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': failed to subscribe to humidity char (%s) in env service on device %s"),
sensorId, sSensor.name,
charUuid.toString().c_str(), pAddress
);
}
}
}
if (!humidityNotifyCreated) {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': not found supported humidity chars in env service on device %s"),
sensorId, sSensor.name, pAddress
);
}
}
}
// Battery Service (0x180F)
{
NimBLEUUID serviceUuid((uint16_t) 0x180F);
pService = pClient->getService(serviceUuid);
if (!pService) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': failed to find battery service (%s) on device %s"),
sensorId, sSensor.name, serviceUuid.toString().c_str(), pAddress
); );
} else { } else {
Log.sinfoln(FPSTR(L_SENSORS_BLE), F("Unable to start scanning")); Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': found battery service (%s) on device %s"),
sensorId, sSensor.name, serviceUuid.toString().c_str(), pAddress
);
// 0x2A19 - Notify the battery charge level 0..99% (pvvx)
bool batteryNotifyCreated = false;
if (!batteryNotifyCreated) {
NimBLEUUID charUuid((uint16_t) 0x2A19);
pChar = pService->getCharacteristic(charUuid);
if (pChar && (pChar->canNotify() || pChar->canIndicate())) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': found battery char (%s) in battery service on device %s"),
sensorId, sSensor.name, charUuid.toString().c_str(), pAddress
);
pChar->unsubscribe();
batteryNotifyCreated = pChar->subscribe(
pChar->canNotify(),
[sensorId](NimBLERemoteCharacteristic* pChar, uint8_t* pData, size_t length, bool isNotify) {
if (pChar == nullptr) {
return;
}
const NimBLERemoteService* pService = pChar->getRemoteService();
if (pService == nullptr) {
return;
}
NimBLEClient* pClient = pService->getClient();
if (pClient == nullptr) {
return;
}
auto& sSensor = Sensors::settings[sensorId];
if (length != 1) {
Log.swarningln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s': invalid notification data at battery char (%s) on device %s"),
sensorId,
sSensor.name,
pChar->getUUID().toString().c_str(),
pClient->getPeerAddress().toString().c_str()
);
return;
}
auto rawBattery = pChar->getValue<uint8_t>();
Log.straceln(
FPSTR(L_SENSORS_BLE),
F("Sensor #%hhu '%s': received battery: %hhu"),
sensorId, sSensor.name, rawBattery
);
// set battery
Sensors::setValueById(sensorId, rawBattery, Sensors::ValueType::BATTERY, true, true);
// update rssi
Sensors::setValueById(sensorId, pClient->getRssi(), Sensors::ValueType::RSSI, false, false);
}
);
if (batteryNotifyCreated) {
Log.straceln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': subscribed to battery char (%s) in battery service on device %s"),
sensorId, sSensor.name,
charUuid.toString().c_str(), pAddress
);
} else {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': failed to subscribe to battery char (%s) in battery service on device %s"),
sensorId, sSensor.name,
charUuid.toString().c_str(), pAddress
);
}
}
}
if (!batteryNotifyCreated) {
Log.swarningln(
FPSTR(L_SENSORS_BLE), F("Sensor #%hhu '%s': not found supported battery chars in battery service on device %s"),
sensorId, sSensor.name, pAddress
);
}
} }
} }
return true;
}
bool setDateOnBleSensor(NimBLEClient* pClient, const struct tm *ptm) {
auto ts = mkgmtime(ptm);
uint8_t data[5] = {};
data[0] = 0x23;
data[1] = ts & 0xff;
data[2] = (ts >> 8) & 0xff;
data[3] = (ts >> 16) & 0xff;
data[4] = (ts >> 24) & 0xff;
return pClient->setValue(
NimBLEUUID((uint16_t) 0x1f10),
NimBLEUUID((uint16_t) 0x1f1f),
NimBLEAttValue(data, sizeof(data))
);
} }
#endif #endif

View File

@@ -12,13 +12,13 @@ struct NetworkSettings {
struct { struct {
char ssid[33] = DEFAULT_AP_SSID; char ssid[33] = DEFAULT_AP_SSID;
char password[65] = DEFAULT_AP_PASSWORD; char password[65] = DEFAULT_AP_PASSWORD;
uint8_t channel = 6; byte channel = 6;
} ap; } ap;
struct { struct {
char ssid[33] = DEFAULT_STA_SSID; char ssid[33] = DEFAULT_STA_SSID;
char password[65] = DEFAULT_STA_PASSWORD; char password[65] = DEFAULT_STA_PASSWORD;
uint8_t channel = 0; byte channel = 0;
} sta; } sta;
} networkSettings; } networkSettings;
@@ -42,7 +42,7 @@ struct Settings {
} ntp; } ntp;
UnitSystem unitSystem = UnitSystem::METRIC; UnitSystem unitSystem = UnitSystem::METRIC;
uint8_t statusLedGpio = DEFAULT_STATUS_LED_GPIO; byte statusLedGpio = DEFAULT_STATUS_LED_GPIO;
} system; } system;
struct { struct {
@@ -54,9 +54,9 @@ struct Settings {
struct { struct {
UnitSystem unitSystem = UnitSystem::METRIC; UnitSystem unitSystem = UnitSystem::METRIC;
uint8_t inGpio = DEFAULT_OT_IN_GPIO; byte inGpio = DEFAULT_OT_IN_GPIO;
uint8_t outGpio = DEFAULT_OT_OUT_GPIO; byte outGpio = DEFAULT_OT_OUT_GPIO;
uint8_t rxLedGpio = DEFAULT_OT_RX_LED_GPIO; byte rxLedGpio = DEFAULT_OT_RX_LED_GPIO;
uint8_t memberId = 0; uint8_t memberId = 0;
uint8_t flags = 0; uint8_t flags = 0;
float minPower = 0.0f; float minPower = 0.0f;
@@ -105,8 +105,8 @@ struct Settings {
float target = DEFAULT_HEATING_TARGET_TEMP; float target = DEFAULT_HEATING_TARGET_TEMP;
float hysteresis = 0.5f; float hysteresis = 0.5f;
float turboFactor = 7.5f; float turboFactor = 7.5f;
uint8_t minTemp = DEFAULT_HEATING_MIN_TEMP; byte minTemp = DEFAULT_HEATING_MIN_TEMP;
uint8_t maxTemp = DEFAULT_HEATING_MAX_TEMP; byte maxTemp = DEFAULT_HEATING_MAX_TEMP;
uint8_t maxModulation = 100; uint8_t maxModulation = 100;
struct { struct {
@@ -123,8 +123,8 @@ struct Settings {
struct { struct {
bool enabled = true; bool enabled = true;
float target = DEFAULT_DHW_TARGET_TEMP; float target = DEFAULT_DHW_TARGET_TEMP;
uint8_t minTemp = DEFAULT_DHW_MIN_TEMP; byte minTemp = DEFAULT_DHW_MIN_TEMP;
uint8_t maxTemp = DEFAULT_DHW_MAX_TEMP; byte maxTemp = DEFAULT_DHW_MAX_TEMP;
uint8_t maxModulation = 100; uint8_t maxModulation = 100;
struct { struct {
@@ -154,15 +154,15 @@ struct Settings {
struct { struct {
bool enabled = false; bool enabled = false;
float n_factor = 0.7f; float slope = 0.7f;
float k_factor = 3.0f; float exponent = 1.3f;
float t_factor = 2.0f; float shift = 0.0f;
float targetDiffFactor = 2.0f;
} equitherm; } equitherm;
struct { struct {
bool use = false; bool use = false;
uint8_t gpio = DEFAULT_EXT_PUMP_GPIO; byte gpio = DEFAULT_EXT_PUMP_GPIO;
bool invertState = false;
unsigned short postCirculationTime = 600; unsigned short postCirculationTime = 600;
unsigned int antiStuckInterval = 2592000; unsigned int antiStuckInterval = 2592000;
unsigned short antiStuckTime = 300; unsigned short antiStuckTime = 300;
@@ -171,15 +171,15 @@ struct Settings {
struct { struct {
struct { struct {
bool enabled = false; bool enabled = false;
uint8_t gpio = GPIO_IS_NOT_CONFIGURED; byte gpio = GPIO_IS_NOT_CONFIGURED;
bool invertState = false; byte invertState = false;
unsigned short thresholdTime = 60; unsigned short thresholdTime = 60;
} input; } input;
struct { struct {
bool enabled = false; bool enabled = false;
uint8_t gpio = GPIO_IS_NOT_CONFIGURED; byte gpio = GPIO_IS_NOT_CONFIGURED;
bool invertState = false; byte invertState = false;
unsigned short thresholdTime = 60; unsigned short thresholdTime = 60;
bool onFault = true; bool onFault = true;
bool onLossConnection = true; bool onLossConnection = true;
@@ -330,14 +330,10 @@ struct Variables {
bool connected = false; bool connected = false;
bool flame = false; bool flame = false;
bool cooling = false;
float pressure = 0.0f; float pressure = 0.0f;
float heatExchangerTemp = 0.0f; float heatExchangerTemp = 0.0f;
struct {
bool active = false;
uint8_t setpoint = 0;
} cooling;
struct { struct {
bool active = false; bool active = false;
uint8_t code = 0; uint8_t code = 0;

View File

@@ -1,3 +1,6 @@
#define ARDUINOJSON_USE_DOUBLE 0
#define ARDUINOJSON_USE_LONG_LONG 0
#include <Arduino.h> #include <Arduino.h>
#include <ArduinoJson.h> #include <ArduinoJson.h>
#include <FileData.h> #include <FileData.h>
@@ -213,7 +216,7 @@ void setup() {
tRegulator = new RegulatorTask(true, 10000); tRegulator = new RegulatorTask(true, 10000);
Scheduler.start(tRegulator); Scheduler.start(tRegulator);
tPortal = new PortalTask(true, 10); tPortal = new PortalTask(true, 0);
Scheduler.start(tPortal); Scheduler.start(tPortal);
tMain = new MainTask(true, 100); tMain = new MainTask(true, 100);

View File

@@ -81,6 +81,7 @@ const char S_ENABLED[] PROGMEM = "enabled";
const char S_ENV[] PROGMEM = "env"; const char S_ENV[] PROGMEM = "env";
const char S_EPC[] PROGMEM = "epc"; const char S_EPC[] PROGMEM = "epc";
const char S_EQUITHERM[] PROGMEM = "equitherm"; const char S_EQUITHERM[] PROGMEM = "equitherm";
const char S_EXPONENT[] PROGMEM = "exponent";
const char S_EXTERNAL_PUMP[] PROGMEM = "externalPump"; const char S_EXTERNAL_PUMP[] PROGMEM = "externalPump";
const char S_FACTOR[] PROGMEM = "factor"; const char S_FACTOR[] PROGMEM = "factor";
const char S_FAULT[] PROGMEM = "fault"; const char S_FAULT[] PROGMEM = "fault";
@@ -117,7 +118,6 @@ const char S_INVERT_STATE[] PROGMEM = "invertState";
const char S_IP[] PROGMEM = "ip"; const char S_IP[] PROGMEM = "ip";
const char S_I_FACTOR[] PROGMEM = "i_factor"; const char S_I_FACTOR[] PROGMEM = "i_factor";
const char S_I_MULTIPLIER[] PROGMEM = "i_multiplier"; const char S_I_MULTIPLIER[] PROGMEM = "i_multiplier";
const char S_K_FACTOR[] PROGMEM = "k_factor";
const char S_LOGIN[] PROGMEM = "login"; const char S_LOGIN[] PROGMEM = "login";
const char S_LOG_LEVEL[] PROGMEM = "logLevel"; const char S_LOG_LEVEL[] PROGMEM = "logLevel";
const char S_LOW_TEMP[] PROGMEM = "lowTemp"; const char S_LOW_TEMP[] PROGMEM = "lowTemp";
@@ -143,7 +143,6 @@ const char S_NAME[] PROGMEM = "name";
const char S_NATIVE_HEATING_CONTROL[] PROGMEM = "nativeHeatingControl"; const char S_NATIVE_HEATING_CONTROL[] PROGMEM = "nativeHeatingControl";
const char S_NETWORK[] PROGMEM = "network"; const char S_NETWORK[] PROGMEM = "network";
const char S_NTP[] PROGMEM = "ntp"; const char S_NTP[] PROGMEM = "ntp";
const char S_N_FACTOR[] PROGMEM = "n_factor";
const char S_OFFSET[] PROGMEM = "offset"; const char S_OFFSET[] PROGMEM = "offset";
const char S_ON_ENABLED_HEATING[] PROGMEM = "onEnabledHeating"; const char S_ON_ENABLED_HEATING[] PROGMEM = "onEnabledHeating";
const char S_ON_FAULT[] PROGMEM = "onFault"; const char S_ON_FAULT[] PROGMEM = "onFault";
@@ -164,7 +163,6 @@ const char S_POWER[] PROGMEM = "power";
const char S_PREFIX[] PROGMEM = "prefix"; const char S_PREFIX[] PROGMEM = "prefix";
const char S_PROTOCOL_VERSION[] PROGMEM = "protocolVersion"; const char S_PROTOCOL_VERSION[] PROGMEM = "protocolVersion";
const char S_PURPOSE[] PROGMEM = "purpose"; const char S_PURPOSE[] PROGMEM = "purpose";
const char S_PSRAM[] PROGMEM = "psram";
const char S_P_FACTOR[] PROGMEM = "p_factor"; const char S_P_FACTOR[] PROGMEM = "p_factor";
const char S_P_MULTIPLIER[] PROGMEM = "p_multiplier"; const char S_P_MULTIPLIER[] PROGMEM = "p_multiplier";
const char S_REAL_SIZE[] PROGMEM = "realSize"; const char S_REAL_SIZE[] PROGMEM = "realSize";
@@ -183,20 +181,22 @@ const char S_SERIAL[] PROGMEM = "serial";
const char S_SERVER[] PROGMEM = "server"; const char S_SERVER[] PROGMEM = "server";
const char S_SETTINGS[] PROGMEM = "settings"; const char S_SETTINGS[] PROGMEM = "settings";
const char S_SET_DATE_AND_TIME[] PROGMEM = "setDateAndTime"; const char S_SET_DATE_AND_TIME[] PROGMEM = "setDateAndTime";
const char S_SHIFT[] PROGMEM = "shift";
const char S_SIGNAL_QUALITY[] PROGMEM = "signalQuality"; const char S_SIGNAL_QUALITY[] PROGMEM = "signalQuality";
const char S_SIZE[] PROGMEM = "size"; const char S_SIZE[] PROGMEM = "size";
const char S_SLAVE[] PROGMEM = "slave"; const char S_SLAVE[] PROGMEM = "slave";
const char S_SLOPE[] PROGMEM = "slope";
const char S_SSID[] PROGMEM = "ssid"; const char S_SSID[] PROGMEM = "ssid";
const char S_STA[] PROGMEM = "sta"; const char S_STA[] PROGMEM = "sta";
const char S_STATE[] PROGMEM = "state"; const char S_STATE[] PROGMEM = "state";
const char S_STATIC_CONFIG[] PROGMEM = "staticConfig"; const char S_STATIC_CONFIG[] PROGMEM = "staticConfig";
const char S_STATUS_LED_GPIO[] PROGMEM = "statusLedGpio"; const char S_STATUS_LED_GPIO[] PROGMEM = "statusLedGpio";
const char S_SETPOINT[] PROGMEM = "setpoint";
const char S_SETPOINT_TEMP[] PROGMEM = "setpointTemp"; const char S_SETPOINT_TEMP[] PROGMEM = "setpointTemp";
const char S_SUBNET[] PROGMEM = "subnet"; const char S_SUBNET[] PROGMEM = "subnet";
const char S_SUMMER_WINTER_MODE[] PROGMEM = "summerWinterMode"; const char S_SUMMER_WINTER_MODE[] PROGMEM = "summerWinterMode";
const char S_SYSTEM[] PROGMEM = "system"; const char S_SYSTEM[] PROGMEM = "system";
const char S_TARGET[] PROGMEM = "target"; const char S_TARGET[] PROGMEM = "target";
const char S_TARGET_DIFF_FACTOR[] PROGMEM = "targetDiffFactor";
const char S_TARGET_TEMP[] PROGMEM = "targetTemp"; const char S_TARGET_TEMP[] PROGMEM = "targetTemp";
const char S_TELNET[] PROGMEM = "telnet"; const char S_TELNET[] PROGMEM = "telnet";
const char S_TEMPERATURE[] PROGMEM = "temperature"; const char S_TEMPERATURE[] PROGMEM = "temperature";
@@ -209,7 +209,6 @@ const char S_TRESHOLD_TIME[] PROGMEM = "tresholdTime";
const char S_TURBO[] PROGMEM = "turbo"; const char S_TURBO[] PROGMEM = "turbo";
const char S_TURBO_FACTOR[] PROGMEM = "turboFactor"; const char S_TURBO_FACTOR[] PROGMEM = "turboFactor";
const char S_TYPE[] PROGMEM = "type"; const char S_TYPE[] PROGMEM = "type";
const char S_T_FACTOR[] PROGMEM = "t_factor";
const char S_UNIT_SYSTEM[] PROGMEM = "unitSystem"; const char S_UNIT_SYSTEM[] PROGMEM = "unitSystem";
const char S_UPTIME[] PROGMEM = "uptime"; const char S_UPTIME[] PROGMEM = "uptime";
const char S_USE[] PROGMEM = "use"; const char S_USE[] PROGMEM = "use";

View File

@@ -72,7 +72,7 @@ time_t mkgmtime(const struct tm *ptm) {
inline bool isDigit(const char* ptr) { inline bool isDigit(const char* ptr) {
char* endPtr; char* endPtr;
auto tmp = strtol(ptr, &endPtr, 10); strtol(ptr, &endPtr, 10);
return *endPtr == 0; return *endPtr == 0;
} }
@@ -517,9 +517,10 @@ void settingsToJson(const Settings& src, JsonVariant dst, bool safe = false) {
auto equitherm = dst[FPSTR(S_EQUITHERM)].to<JsonObject>(); auto equitherm = dst[FPSTR(S_EQUITHERM)].to<JsonObject>();
equitherm[FPSTR(S_ENABLED)] = src.equitherm.enabled; equitherm[FPSTR(S_ENABLED)] = src.equitherm.enabled;
equitherm[FPSTR(S_N_FACTOR)] = roundf(src.equitherm.n_factor, 3); equitherm[FPSTR(S_SLOPE)] = roundf(src.equitherm.slope, 3);
equitherm[FPSTR(S_K_FACTOR)] = roundf(src.equitherm.k_factor, 3); equitherm[FPSTR(S_EXPONENT)] = roundf(src.equitherm.exponent, 3);
equitherm[FPSTR(S_T_FACTOR)] = roundf(src.equitherm.t_factor, 3); equitherm[FPSTR(S_SHIFT)] = roundf(src.equitherm.shift, 2);
equitherm[FPSTR(S_TARGET_DIFF_FACTOR)] = roundf(src.equitherm.targetDiffFactor, 3);
auto pid = dst[FPSTR(S_PID)].to<JsonObject>(); auto pid = dst[FPSTR(S_PID)].to<JsonObject>();
pid[FPSTR(S_ENABLED)] = src.pid.enabled; pid[FPSTR(S_ENABLED)] = src.pid.enabled;
@@ -542,7 +543,6 @@ void settingsToJson(const Settings& src, JsonVariant dst, bool safe = false) {
auto externalPump = dst[FPSTR(S_EXTERNAL_PUMP)].to<JsonObject>(); auto externalPump = dst[FPSTR(S_EXTERNAL_PUMP)].to<JsonObject>();
externalPump[FPSTR(S_USE)] = src.externalPump.use; externalPump[FPSTR(S_USE)] = src.externalPump.use;
externalPump[FPSTR(S_GPIO)] = src.externalPump.gpio; externalPump[FPSTR(S_GPIO)] = src.externalPump.gpio;
externalPump[FPSTR(S_INVERT_STATE)] = src.externalPump.invertState;
externalPump[FPSTR(S_POST_CIRCULATION_TIME)] = roundf(src.externalPump.postCirculationTime / 60, 0); externalPump[FPSTR(S_POST_CIRCULATION_TIME)] = roundf(src.externalPump.postCirculationTime / 60, 0);
externalPump[FPSTR(S_ANTI_STUCK_INTERVAL)] = roundf(src.externalPump.antiStuckInterval / 86400, 0); externalPump[FPSTR(S_ANTI_STUCK_INTERVAL)] = roundf(src.externalPump.antiStuckInterval / 86400, 0);
externalPump[FPSTR(S_ANTI_STUCK_TIME)] = roundf(src.externalPump.antiStuckTime / 60, 0); externalPump[FPSTR(S_ANTI_STUCK_TIME)] = roundf(src.externalPump.antiStuckTime / 60, 0);
@@ -1127,29 +1127,38 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
} }
} }
if (!src[FPSTR(S_EQUITHERM)][FPSTR(S_N_FACTOR)].isNull()) { if (!src[FPSTR(S_EQUITHERM)][FPSTR(S_SLOPE)].isNull()) {
float value = src[FPSTR(S_EQUITHERM)][FPSTR(S_N_FACTOR)].as<float>(); float value = src[FPSTR(S_EQUITHERM)][FPSTR(S_SLOPE)].as<float>();
if (value > 0 && value <= 10 && fabsf(value - dst.equitherm.n_factor) > 0.0001f) { if (value > 0.0f && value <= 10.0f && fabsf(value - dst.equitherm.slope) > 0.0001f) {
dst.equitherm.n_factor = roundf(value, 3); dst.equitherm.slope = roundf(value, 3);
changed = true; changed = true;
} }
} }
if (!src[FPSTR(S_EQUITHERM)][FPSTR(S_K_FACTOR)].isNull()) { if (!src[FPSTR(S_EQUITHERM)][FPSTR(S_EXPONENT)].isNull()) {
float value = src[FPSTR(S_EQUITHERM)][FPSTR(S_K_FACTOR)].as<float>(); float value = src[FPSTR(S_EQUITHERM)][FPSTR(S_EXPONENT)].as<float>();
if (value >= 0 && value <= 10 && fabsf(value - dst.equitherm.k_factor) > 0.0001f) { if (value > 0.0f && value <= 2.0f && fabsf(value - dst.equitherm.exponent) > 0.0001f) {
dst.equitherm.k_factor = roundf(value, 3); dst.equitherm.exponent = roundf(value, 3);
changed = true; changed = true;
} }
} }
if (!src[FPSTR(S_EQUITHERM)][FPSTR(S_T_FACTOR)].isNull()) { if (!src[FPSTR(S_EQUITHERM)][FPSTR(S_SHIFT)].isNull()) {
float value = src[FPSTR(S_EQUITHERM)][FPSTR(S_T_FACTOR)].as<float>(); float value = src[FPSTR(S_EQUITHERM)][FPSTR(S_SHIFT)].as<float>();
if (value >= 0 && value <= 10 && fabsf(value - dst.equitherm.t_factor) > 0.0001f) { if (value >= -15.0f && value <= 15.0f && fabsf(value - dst.equitherm.shift) > 0.0001f) {
dst.equitherm.t_factor = roundf(value, 3); dst.equitherm.shift = roundf(value, 2);
changed = true;
}
}
if (!src[FPSTR(S_EQUITHERM)][FPSTR(S_TARGET_DIFF_FACTOR)].isNull()) {
float value = src[FPSTR(S_EQUITHERM)][FPSTR(S_TARGET_DIFF_FACTOR)].as<float>();
if (value >= 0.0f && value <= 10.0f && fabsf(value - dst.equitherm.targetDiffFactor) > 0.0001f) {
dst.equitherm.targetDiffFactor = roundf(value, 3);
changed = true; changed = true;
} }
} }
@@ -1325,7 +1334,7 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!src[FPSTR(S_HEATING)][FPSTR(S_MIN_TEMP)].isNull()) { if (!src[FPSTR(S_HEATING)][FPSTR(S_MIN_TEMP)].isNull()) {
unsigned char value = src[FPSTR(S_HEATING)][FPSTR(S_MIN_TEMP)].as<unsigned char>(); unsigned char value = src[FPSTR(S_HEATING)][FPSTR(S_MIN_TEMP)].as<unsigned char>();
if (value != dst.heating.minTemp && value >= vars.slave.heating.minTemp && value < vars.slave.heating.maxTemp && value != dst.heating.maxTemp) { if (value != dst.heating.minTemp && value >= vars.slave.heating.minTemp && value < vars.slave.heating.maxTemp && value != dst.heating.minTemp) {
dst.heating.minTemp = value; dst.heating.minTemp = value;
changed = true; changed = true;
} }
@@ -1334,7 +1343,7 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
if (!src[FPSTR(S_HEATING)][FPSTR(S_MAX_TEMP)].isNull()) { if (!src[FPSTR(S_HEATING)][FPSTR(S_MAX_TEMP)].isNull()) {
unsigned char value = src[FPSTR(S_HEATING)][FPSTR(S_MAX_TEMP)].as<unsigned char>(); unsigned char value = src[FPSTR(S_HEATING)][FPSTR(S_MAX_TEMP)].as<unsigned char>();
if (value != dst.heating.maxTemp && value > vars.slave.heating.minTemp && value <= vars.slave.heating.maxTemp && value != dst.heating.minTemp) { if (value != dst.heating.maxTemp && value > vars.slave.heating.minTemp && value <= vars.slave.heating.maxTemp && value != dst.heating.maxTemp) {
dst.heating.maxTemp = value; dst.heating.maxTemp = value;
changed = true; changed = true;
} }
@@ -1493,15 +1502,6 @@ bool jsonToSettings(const JsonVariantConst src, Settings& dst, bool safe = false
} }
} }
if (src[FPSTR(S_EXTERNAL_PUMP)][FPSTR(S_INVERT_STATE)].is<bool>()) {
bool value = src[FPSTR(S_EXTERNAL_PUMP)][FPSTR(S_INVERT_STATE)].as<bool>();
if (value != dst.externalPump.invertState) {
dst.externalPump.invertState = value;
changed = true;
}
}
if (!src[FPSTR(S_EXTERNAL_PUMP)][FPSTR(S_POST_CIRCULATION_TIME)].isNull()) { if (!src[FPSTR(S_EXTERNAL_PUMP)][FPSTR(S_POST_CIRCULATION_TIME)].isNull()) {
unsigned short value = src[FPSTR(S_EXTERNAL_PUMP)][FPSTR(S_POST_CIRCULATION_TIME)].as<unsigned short>(); unsigned short value = src[FPSTR(S_EXTERNAL_PUMP)][FPSTR(S_POST_CIRCULATION_TIME)].as<unsigned short>();
@@ -1904,7 +1904,7 @@ bool jsonToSensorSettings(const uint8_t sensorId, const JsonVariantConst src, Se
// gpio // gpio
if (!src[FPSTR(S_GPIO)].isNull()) { if (!src[FPSTR(S_GPIO)].isNull()) {
if (dst.type != Sensors::Type::DALLAS_TEMP && dst.type != Sensors::Type::NTC_10K_TEMP) { if (dst.type != Sensors::Type::DALLAS_TEMP && dst.type == Sensors::Type::BLUETOOTH && dst.type == Sensors::Type::NTC_10K_TEMP) {
if (dst.gpio != GPIO_IS_NOT_CONFIGURED) { if (dst.gpio != GPIO_IS_NOT_CONFIGURED) {
dst.gpio = GPIO_IS_NOT_CONFIGURED; dst.gpio = GPIO_IS_NOT_CONFIGURED;
changed = true; changed = true;
@@ -1940,20 +1940,12 @@ bool jsonToSensorSettings(const uint8_t sensorId, const JsonVariantConst src, Se
); );
if (parsed == 8) { if (parsed == 8) {
for (uint8_t i = 0; i < parsed; i++) { for (uint8_t i = 0; i < 8; i++) {
if (dst.address[i] != tmp[i]) { if (dst.address[i] != tmp[i]) {
dst.address[i] = tmp[i]; dst.address[i] = tmp[i];
changed = true; changed = true;
} }
} }
} else {
// reset
for (uint8_t i = 0; i < sizeof(dst.address); i++) {
dst.address[i] = 0x00;
}
changed = true;
} }
} else if (dst.type == Sensors::Type::BLUETOOTH) { } else if (dst.type == Sensors::Type::BLUETOOTH) {
@@ -1966,20 +1958,12 @@ bool jsonToSensorSettings(const uint8_t sensorId, const JsonVariantConst src, Se
); );
if (parsed == 6) { if (parsed == 6) {
for (uint8_t i = 0; i < parsed; i++) { for (uint8_t i = 0; i < 6; i++) {
if (dst.address[i] != tmp[i]) { if (dst.address[i] != tmp[i]) {
dst.address[i] = tmp[i]; dst.address[i] = tmp[i];
changed = true; changed = true;
} }
} }
} else {
// reset
for (uint8_t i = 0; i < sizeof(dst.address); i++) {
dst.address[i] = 0x00;
}
changed = true;
} }
} }
} }
@@ -2086,10 +2070,7 @@ void varsToJson(const Variables& src, JsonVariant dst) {
slave[FPSTR(S_PROTOCOL_VERSION)] = src.slave.appVersion; slave[FPSTR(S_PROTOCOL_VERSION)] = src.slave.appVersion;
slave[FPSTR(S_CONNECTED)] = src.slave.connected; slave[FPSTR(S_CONNECTED)] = src.slave.connected;
slave[FPSTR(S_FLAME)] = src.slave.flame; slave[FPSTR(S_FLAME)] = src.slave.flame;
slave[FPSTR(S_COOLING)] = src.slave.cooling;
auto sCooling = slave[FPSTR(S_COOLING)].to<JsonObject>();
sCooling[FPSTR(S_ACTIVE)] = src.slave.cooling.active;
sCooling[FPSTR(S_SETPOINT)] = src.slave.cooling.setpoint;
auto sModulation = slave[FPSTR(S_MODULATION)].to<JsonObject>(); auto sModulation = slave[FPSTR(S_MODULATION)].to<JsonObject>();
sModulation[FPSTR(S_MIN)] = src.slave.modulation.min; sModulation[FPSTR(S_MIN)] = src.slave.modulation.min;

View File

@@ -109,8 +109,7 @@
"sConnected": "OpenTherm 通讯状态", "sConnected": "OpenTherm 通讯状态",
"sFlame": "火焰", "sFlame": "火焰",
"sCoolingActive": "制冷", "sCooling": "制冷",
"sCoolingSetpoint": "冷却设定点",
"sFaultActive": "报警状态", "sFaultActive": "报警状态",
"sFaultCode": "报警代码", "sFaultCode": "报警代码",
"sDiagActive": "诊断状态", "sDiagActive": "诊断状态",
@@ -455,7 +454,6 @@
"extPump": { "extPump": {
"use": "使用外置循环泵", "use": "使用外置循环泵",
"gpio": "继电器 GPIO引脚", "gpio": "继电器 GPIO引脚",
"invertState": "切换 GPIO 状态",
"postCirculationTime": "后循环时间 <small>(分钟)</small>", "postCirculationTime": "后循环时间 <small>(分钟)</small>",
"antiStuckInterval": "防卡死间隔时间<small>(天)</small>", "antiStuckInterval": "防卡死间隔时间<small>(天)</small>",
"antiStuckTime": "防卡死运行时长<small>(分钟)</small>" "antiStuckTime": "防卡死运行时长<small>(分钟)</small>"

View File

@@ -109,8 +109,7 @@
"sConnected": "OpenTherm connection", "sConnected": "OpenTherm connection",
"sFlame": "Flame", "sFlame": "Flame",
"sCoolingActive": "Cooling", "sCooling": "Cooling",
"sCoolingSetpoint": "Cooling setpoint",
"sFaultActive": "Fault", "sFaultActive": "Fault",
"sFaultCode": "Fault code", "sFaultCode": "Fault code",
"sDiagActive": "Diagnostic", "sDiagActive": "Diagnostic",
@@ -371,11 +370,26 @@
}, },
"equitherm": { "equitherm": {
"n": "N factor", "slope": {
"k": "K factor", "title": "Slope",
"t": { "note": "Heat loss compensation. Main tuning parameter."
},
"exponent": {
"title": "Exponent",
"note": "Radiator efficiency. Typical values: 1.1 - Floor heating, 1.2 - Cast iron, 1.3 - Panel radiators, 1.4 - Convectors."
},
"shift": {
"title": "Shift",
"note": "Compensates for additional heat losses (e.g., in pipes) or extra heat sources."
},
"targetDiffFactor": {
"title": "T factor", "title": "T factor",
"note": "Not used if PID is enabled" "note": "Not used if PID is enabled"
},
"chart": {
"targetTemp": "Target indoor temperature",
"setpointTemp": "Heat carrier temperature",
"outdoorTemp": "Outdoor temperature"
} }
}, },
@@ -455,7 +469,6 @@
"extPump": { "extPump": {
"use": "Use external pump", "use": "Use external pump",
"gpio": "Relay GPIO", "gpio": "Relay GPIO",
"invertState": "Invert GPIO state",
"postCirculationTime": "Post circulation time <small>(min)</small>", "postCirculationTime": "Post circulation time <small>(min)</small>",
"antiStuckInterval": "Anti stuck interval <small>(days)</small>", "antiStuckInterval": "Anti stuck interval <small>(days)</small>",
"antiStuckTime": "Anti stuck time <small>(min)</small>" "antiStuckTime": "Anti stuck time <small>(min)</small>"

View File

@@ -109,8 +109,7 @@
"sConnected": "Connessione OpenTherm", "sConnected": "Connessione OpenTherm",
"sFlame": "Fiamma", "sFlame": "Fiamma",
"sCoolingActive": "Raffrescamento", "sCooling": "Raffrescamento",
"sCoolingSetpoint": "Raffrescamento setpoint",
"sFaultActive": "Anomalia", "sFaultActive": "Anomalia",
"sFaultCode": "Codice anomalia", "sFaultCode": "Codice anomalia",
"sDiagActive": "Diagnostica", "sDiagActive": "Diagnostica",
@@ -371,11 +370,26 @@
}, },
"equitherm": { "equitherm": {
"n": "Fattore N", "slope": {
"k": "Fattore K", "title": "Pendenza",
"t": { "note": "Compensazione delle perdite di calore. Principale parametro di regolazione."
},
"exponent": {
"title": "Esponente",
"note": "Efficienza del radiatore. Valori tipici: 1.1 - Riscaldamento a pavimento, 1.2 - Radiatori in ghisa, 1.3 - Radiatori a pannelli, 1.4 - Convetttori."
},
"shift": {
"title": "Spostare",
"note": "Compensa le perdite di calore aggiuntive (ad esempio, nelle tubature) o fonti di calore extra."
},
"targetDiffFactor": {
"title": "Fattore T", "title": "Fattore T",
"note": "Non usato se PID è attivato" "note": "Non usato se PID è attivato"
},
"chart": {
"targetTemp": "Temperatura interna target",
"setpointTemp": "Temperatura del portatore di calore",
"outdoorTemp": "Temperatura esterna"
} }
}, },
@@ -455,7 +469,6 @@
"extPump": { "extPump": {
"use": "Usa pompa/circolatore esterno", "use": "Usa pompa/circolatore esterno",
"gpio": "GPIO relè", "gpio": "GPIO relè",
"invertState": "Inverti stato GPIO",
"postCirculationTime": "Tempo di post circolazione <small>(min)</small>", "postCirculationTime": "Tempo di post circolazione <small>(min)</small>",
"antiStuckInterval": "Intervallo antiblocco <small>(days)</small>", "antiStuckInterval": "Intervallo antiblocco <small>(days)</small>",
"antiStuckTime": "Tempo antiblocco <small>(min)</small>" "antiStuckTime": "Tempo antiblocco <small>(min)</small>"

View File

@@ -1,466 +0,0 @@
{
"values": {
"logo": "OpenTherm Gateway",
"nav": {
"license": "Licentie",
"source": "Broncode",
"help": "Help",
"issues": "Problemen & vragen",
"releases": "Releases"
},
"dbm": "dBm",
"kw": "kW",
"time": {
"days": "d.",
"hours": "u.",
"min": "min.",
"sec": "sec."
},
"button": {
"upgrade": "Upgraden",
"restart": "Herstarten",
"save": "Opslaan",
"saved": "Opgeslagen",
"refresh": "Vernieuwen",
"restore": "Herstellen",
"restored": "Hersteld",
"backup": "Back-up",
"wait": "Even wachten...",
"uploading": "Uploaden...",
"success": "Succes",
"error": "Fout"
},
"index": {
"title": "OpenTherm Gateway",
"section": {
"network": "Netwerk",
"system": "Systeem"
},
"system": {
"build": {
"title": "Build",
"version": "Versie",
"date": "Datum",
"core": "Core",
"sdk": "SDK"
},
"uptime": "Uptime",
"memory": {
"title": "Vrij geheugen",
"maxFreeBlock": "max. vrij blok",
"min": "min"
},
"board": "Board",
"chip": {
"model": "Chip",
"cores": "Kernen",
"freq": "frequentie"
},
"flash": {
"size": "Flash-grootte",
"realSize": "werkelijke grootte"
},
"lastResetReason": "Reden laatste herstart"
}
},
"dashboard": {
"name": "Dashboard",
"title": "Dashboard - OpenTherm Gateway",
"section": {
"control": "Bediening",
"states": "Statussen",
"sensors": "Sensoren",
"diag": "OpenTherm diagnose"
},
"thermostat": {
"heating": "Verwarming",
"dhw": "Warm water",
"temp.current": "Huidig",
"enable": "Inschakelen",
"turbo": "Turbomodus"
},
"notify": {
"fault": {
"title": "Ketelstoring is actief!",
"note": "Het wordt aanbevolen de ketel te inspecteren en de documentatie te raadplegen om de storingscode te interpreteren:"
},
"diag": {
"title": "Keteldiagnose is actief!",
"note": "Heeft uw ketel misschien een inspectie nodig? Het wordt aanbevolen de documentatie te raadplegen om de diagnosecode te interpreteren:"
},
"reset": "Probeer te resetten"
},
"states": {
"mNetworkConnected": "Netwerkverbinding",
"mMqttConnected": "MQTT-verbinding",
"mEmergencyState": "Noodmodus",
"mExtPumpState": "Externe pomp",
"mCascadeControlInput": "Cascaderegeling (ingang)",
"mCascadeControlOutput": "Cascaderegeling (uitgang)",
"sConnected": "OpenTherm-verbinding",
"sFlame": "Vlam",
"sCoolingActive": "Koeling",
"sCoolingSetpoint": "Koelinstelpunt",
"sFaultActive": "Storing",
"sFaultCode": "Storingscode",
"sDiagActive": "Diagnose",
"sDiagCode": "Diagnosecode",
"mHeatEnabled": "Verwarming ingeschakeld",
"mHeatBlocking": "Verwarming geblokkeerd",
"mHeatOverheat": "Verwarming oververhit",
"sHeatActive": "Verwarming actief",
"mHeatSetpointTemp": "Insteltemperatuur verwarming",
"mHeatTargetTemp": "Doeltemperatuur verwarming",
"mHeatCurrTemp": "Huidige temperatuur verwarming",
"mHeatRetTemp": "Retourtemperatuur verwarming",
"mHeatIndoorTemp": "Verwarming, binnentemperatuur",
"mHeatOutdoorTemp": "Verwarming, buitentemperatuur",
"mDhwEnabled": "Warm water ingeschakeld",
"mDhwOverheat": "Warm water oververhit",
"sDhwActive": "Warm water actief",
"mDhwTargetTemp": "Doeltemperatuur warm water",
"mDhwCurrTemp": "Huidige temperatuur warm water",
"mDhwRetTemp": "Retourtemperatuur warm water"
},
"sensors": {
"values": {
"temp": "Temperatuur",
"humidity": "Luchtvochtigheid",
"battery": "Batterij",
"rssi": "RSSI"
}
}
},
"network": {
"title": "Netwerk - OpenTherm Gateway",
"name": "Netwerkinstellingen",
"section": {
"static": "Statische instellingen",
"availableNetworks": "Beschikbare netwerken",
"staSettings": "WiFi-instellingen",
"apSettings": "AP-instellingen"
},
"scan": {
"pos": "#",
"info": "Info"
},
"wifi": {
"ssid": "SSID",
"password": "Wachtwoord",
"channel": "Kanaal",
"signal": "Signaal",
"connected": "Verbonden"
},
"params": {
"hostname": "Hostnaam",
"dhcp": "Gebruik DHCP",
"mac": "MAC",
"ip": "IP",
"subnet": "Subnet",
"gateway": "Gateway",
"dns": "DNS"
},
"sta": {
"channel.note": "zet op 0 voor automatische selectie"
}
},
"sensors": {
"title": "Sensorinstellingen - OpenTherm Gateway",
"name": "Sensorinstellingen",
"enabled": "Ingeschakeld",
"sensorName": {
"title": "Sensornaam",
"note": "Mag alleen bevatten: a-z, A-Z, 0-9, _ en spatie"
},
"purpose": "Doel",
"purposes": {
"outdoorTemp": "Buitentemperatuur",
"indoorTemp": "Binnentemperatuur",
"heatTemp": "Verwarming, temperatuur",
"heatRetTemp": "Verwarming, retourtemperatuur",
"dhwTemp": "Warm water, temperatuur",
"dhwRetTemp": "Warm water, retourtemperatuur",
"dhwFlowRate": "Warm water, doorstroomsnelheid",
"exhaustTemp": "Rookgastemperatuur",
"modLevel": "Modulatieniveau (in procenten)",
"number": "Getal (ruw)",
"powerFactor": "Vermogen (in procent)",
"power": "Vermogen (in kWt)",
"fanSpeed": "Ventilatorsnelheid",
"co2": "CO2",
"pressure": "Druk",
"humidity": "Luchtvochtigheid",
"temperature": "Temperatuur",
"notConfigured": "Niet geconfigureerd"
},
"type": "Type/bron",
"types": {
"otOutdoorTemp": "OpenTherm, buitentemp.",
"otHeatTemp": "OpenTherm, verwarming, temp.",
"otHeatRetTemp": "OpenTherm, verwarming, retourtemp.",
"otDhwTemp": "OpenTherm, warm water, temperatuur",
"otDhwTemp2": "OpenTherm, warm water, temperatuur 2",
"otDhwFlowRate": "OpenTherm, warm water, doorstroomsnelheid",
"otCh2Temp": "OpenTherm, kanaal 2, temp.",
"otExhaustTemp": "OpenTherm, rookgastemp.",
"otHeatExchangerTemp": "OpenTherm, warmtewisselaar temp.",
"otPressure": "OpenTherm, druk",
"otModLevel": "OpenTherm, modulatieniveau",
"otCurrentPower": "OpenTherm, huidig vermogen",
"otExhaustCo2": "OpenTherm, rookgas CO2",
"otExhaustFanSpeed": "OpenTherm, rookgasventilator snelheid",
"otSupplyFanSpeed": "OpenTherm, toevoerventilator snelheid",
"otSolarStorageTemp": "OpenTherm, zonneboiler opslagtemp.",
"otSolarCollectorTemp": "OpenTherm, zonnecollector temp.",
"otFanSpeedSetpoint": "OpenTherm, instelpunt ventilatorsnelheid",
"otFanSpeedCurrent": "OpenTherm, huidige ventilatorsnelheid",
"otBurnerStarts": "OpenTherm, aantal branderstarts",
"otDhwBurnerStarts": "OpenTherm, aantal branderstarts (warm water)",
"otHeatingPumpStarts": "OpenTherm, aantal pompstarts (verwarming)",
"otDhwPumpStarts": "OpenTherm, aantal pompstarts (warm water)",
"otBurnerHours": "OpenTherm, aantal branderuren",
"otDhwBurnerHours": "OpenTherm, aantal branderuren (warm water)",
"otHeatingPumpHours": "OpenTherm, aantal pompuren (verwarming)",
"otDhwPumpHours": "OpenTherm, aantal pompuren (warm water)",
"ntcTemp": "NTC-sensor",
"dallasTemp": "DALLAS-sensor",
"bluetooth": "BLE-sensor",
"heatSetpointTemp": "Verwarming, insteltemperatuur",
"manual": "Handmatig via MQTT/API",
"notConfigured": "Niet geconfigureerd"
},
"gpio": "GPIO",
"address": {
"title": "Sensoradres",
"note": "Laat leeg voor automatische detectie van DALLAS-sensoren. Voor BLE-apparaten is een MAC-adres vereist."
},
"correction": {
"desc": "Correctie van waarden",
"offset": "Compensatie (offset)",
"factor": "Vermenigvuldiger"
},
"filtering": {
"desc": "Filteren van waarden",
"enabled": {
"title": "Filteren ingeschakeld",
"note": "Kan handig zijn bij veel scherpe ruis in de grafieken. Het gebruikte filter is \"Voortschrijdend gemiddelde\"."
},
"factor": {
"title": "Filterfactor",
"note": "Hoe lager de waarde, hoe vloeiender en <u>langer</u> de verandering in numerieke waarden."
}
}
},
"settings": {
"title": "Instellingen - OpenTherm Gateway",
"name": "Instellingen",
"section": {
"portal": "Portaalinstellingen",
"system": "Systeeminstellingen",
"diag": "Diagnose",
"heating": "Verwarmingsinstellingen",
"dhw": "Warmwaterinstellingen",
"emergency": "Instellingen noodmodus",
"equitherm": "Equitherm-instellingen",
"pid": "PID-instellingen",
"ot": "OpenTherm-instellingen",
"mqtt": "MQTT-instellingen",
"extPump": "Instellingen externe pomp",
"cascadeControl": "Instellingen cascaderegeling"
},
"enable": "Inschakelen",
"note": {
"restart": "Na het wijzigen van deze instellingen moet het apparaat opnieuw worden opgestart om de wijzigingen door te voeren.",
"blankNotUse": "leeg - niet gebruiken",
"bleDevice": "BLE-apparaat kan <u>alleen</u> worden gebruikt met sommige ESP32-boards met BLE-ondersteuning!"
},
"temp": {
"min": "Minimumtemperatuur",
"max": "Maximumtemperatuur"
},
"maxModulation": "Max. modulatieniveau",
"ohProtection": {
"title": "Oververhittingsbeveiliging",
"desc": "<b>Let op:</b> Deze functie kan handig zijn als de ingebouwde oververhittingsbeveiliging van de ketel niet of niet correct werkt en de warmtedrager kookt. Om uit te schakelen, stel 0 in als <b>hoge</b> en <b>lage</b> temperatuur.",
"highTemp": {
"title": "Drempelwaarde hoge temperatuur",
"note": "Drempelwaarde waarbij de brander geforceerd wordt uitgeschakeld"
},
"lowTemp": {
"title": "Drempelwaarde lage temperatuur",
"note": "Drempelwaarde waarbij de brander weer ingeschakeld kan worden"
}
},
"freezeProtection": {
"title": "Vorstbeveiliging",
"desc": "De verwarming wordt geforceerd ingeschakeld als de temperatuur van de warmtedrager of de binnentemperatuur onder de <b>Lage temperatuur</b> daalt gedurende de <b>Wachttijd</b>.",
"lowTemp": "Drempelwaarde lage temperatuur",
"thresholdTime": "Wachttijd <small>(sec)</small>"
},
"portal": {
"login": "Gebruikersnaam",
"password": "Wachtwoord",
"auth": "Authenticatie vereisen",
"mdns": "Gebruik mDNS"
},
"system": {
"unit": "Eenheidssysteem",
"metric": "Metrisch <small>(celsius, liters, bar)</small>",
"imperial": "Imperiaal <small>(fahrenheit, gallons, psi)</small>",
"statusLedGpio": "Status LED GPIO",
"logLevel": "Logniveau",
"serial": {
"enable": "Seriële poort ingeschakeld",
"baud": "Baudrate seriële poort"
},
"telnet": {
"enable": "Telnet ingeschakeld",
"port": {
"title": "Telnet-poort",
"note": "Standaard: 23"
}
},
"ntp": {
"server": "NTP-server",
"timezone": "Tijdzone",
"timezonePresets": "Selecteer voorinstelling..."
}
},
"heating": {
"hyst": "Hysterese <small>(in graden)</small>",
"turboFactor": "Turbomodus coëff."
},
"emergency": {
"desc": "Noodmodus wordt automatisch geactiveerd wanneer «PID» of «Equitherm» het instelpunt van de warmtedrager niet kan berekenen:<br />- als «Equitherm» is ingeschakeld en de buitentemperatuursensor is losgekoppeld;<br />- als «PID» of OT-optie <i>«Natuurlijke verwarmingsregeling»</i> is ingeschakeld en de binnentemperatuursensor is losgekoppeld.<br /><b>Let op:</b> Bij een netwerk- of MQTT-storing krijgen sensoren van het type <i>«Handmatig via MQTT/API»</i> de status ONVERBONDEN.",
"target": {
"title": "Doeltemperatuur",
"note": "<b>Belangrijk:</b> <u>Doel binnentemperatuur</u> als OT-optie <i>«Natuurlijke verwarmingsregeling»</i> is ingeschakeld.<br />In alle andere gevallen, de <u>doel warmtedragertemperatuur</u>."
},
"treshold": "Drempeltijd <small>(sec)</small>"
},
"equitherm": {
"n": "N-factor",
"k": "K-factor",
"t": {
"title": "T-factor",
"note": "Niet gebruikt als PID is ingeschakeld"
}
},
"pid": {
"p": "P-factor",
"i": "I-factor",
"d": "D-factor",
"dt": "DT <small>in seconden</small>",
"limits": {
"title": "Limieten",
"note": "<b>Belangrijk:</b> Bij gelijktijdig gebruik van «Equitherm» en «PID» beperken de min- en maxtemperaturen de invloed op de resulterende «Equitherm»-temperatuur.<br />Dus, als de min-temperatuur is ingesteld op -15 en de max-temperatuur op 15, zal het uiteindelijke instelpunt van de warmtedrager liggen tussen <code>equitherm_resultaat - 15</code> en <code>equitherm_resultaat + 15</code>."
},
"deadband": {
"title": "Deadband",
"note": "Deadband is een bereik rond de doeltemperatuur waarbinnen de PID-regeling minder actief wordt. Binnen dit bereik kan het algoritme de intensiteit verminderen of aanpassingen pauzeren om overreactie op kleine schommelingen te voorkomen.<br /><br />Bijvoorbeeld, met een doeltemperatuur van 22°, een onderdrempel van 1.0 en een bovendrempel van 0.5, werkt de deadband tussen 21° en 22.5°. Als de I-coëfficiënt 0.0005 is en de I-vermenigvuldiger 0.05, dan wordt de I-coëfficiënt binnen de deadband: <code>0.0005 * 0.05 = 0.000025</code>",
"p_multiplier": "Vermenigvuldiger voor P-factor",
"i_multiplier": "Vermenigvuldiger voor I-factor",
"d_multiplier": "Vermenigvuldiger voor D-factor",
"thresholdHigh": "Bovendrempel",
"thresholdLow": "Onderdrempel"
}
},
"ot": {
"advanced": "Geavanceerde instellingen",
"inGpio": "In GPIO",
"outGpio": "Uit GPIO",
"ledGpio": "RX LED GPIO",
"memberId": "Master member ID",
"flags": "Master flags",
"minPower": {
"title": "Min. ketelvermogen <small>(kW)</small>",
"note": "Deze waarde is bij 0-1% modulatieniveau van de ketel. Typisch te vinden in de ketelspecificatie als \"minimum nuttig warmtevermogen\"."
},
"maxPower": {
"title": "Max. ketelvermogen <small>(kW)</small>",
"note": "<b>0</b> - probeer automatisch te detecteren. Typisch te vinden in de ketelspecificatie als \"maximum nuttig warmtevermogen\"."
},
"options": {
"title": "Opties (aanvullende instellingen)",
"desc": "Opties kunnen de logica van de ketel veranderen. Niet alle opties zijn gedocumenteerd in het protocol, dus dezelfde optie kan verschillende effecten hebben op verschillende ketels.<br /><b>Let op:</b> Het is niet nodig om iets te veranderen als alles goed werkt.",
"dhwSupport": "Warm water ondersteuning",
"coolingSupport": "Koeling ondersteuning",
"summerWinterMode": "Zomer/wintermodus",
"heatingStateToSummerWinterMode": "Verwarmingsstatus als zomer/wintermodus",
"ch2AlwaysEnabled": "CH2 altijd ingeschakeld",
"heatingToCh2": "Dupliceer verwarming naar CH2",
"dhwToCh2": "Dupliceer warm water naar CH2",
"dhwBlocking": "Blokkering warm water",
"dhwStateAsDhwBlocking": "Status warm water als blokkering warm water",
"maxTempSyncWithTargetTemp": "Synchroniseer max. verwarmingstemp. met doeltemp.",
"getMinMaxTemp": "Haal min/max temp. op van ketel",
"ignoreDiagState": "Negeer diagnosestatus",
"autoFaultReset": "Automatische storingsreset <small>(niet aanbevolen!)</small>",
"autoDiagReset": "Automatische diagnosereset <small>(niet aanbevolen!)</small>",
"setDateAndTime": "Stel datum & tijd in op ketel",
"immergasFix": "Fix voor Immergas-ketels"
},
"nativeHeating": {
"title": "Natuurlijke verwarmingsregeling (ketel)",
"note": "Werkt <u>ALLEEN</u> als de ketel de gewenste kamertemperatuur vereist en zelf de temperatuur van de warmtedrager regelt. Niet compatibel met PID- en Equitherm-regelaars in de firmware."
}
},
"mqtt": {
"homeAssistantDiscovery": "Home Assistant Discovery",
"server": "Server",
"port": "Poort",
"user": "Gebruiker",
"password": "Wachtwoord",
"prefix": "Prefix",
"interval": "Publicatie-interval <small>(sec)</small>"
},
"extPump": {
"use": "Gebruik externe pomp",
"gpio": "Relais GPIO",
"invertState": "Inverteer GPIO-status",
"postCirculationTime": "Nacirculatietijd <small>(min)</small>",
"antiStuckInterval": "Anti-vastloopinterval <small>(dagen)</small>",
"antiStuckTime": "Anti-vastlooptijd <small>(min)</small>"
},
"cascadeControl": {
"input": {
"desc": "Kan worden gebruikt om de verwarming alleen in te schakelen als een andere ketel defect is. De besturing van de andere ketel moet de status van de GPIO-ingang wijzigen in geval van een storing.",
"enable": "Ingang ingeschakeld",
"gpio": "GPIO",
"invertState": "Inverteer GPIO-status",
"thresholdTime": "Drempeltijd statuswijziging <small>(sec)</small>"
},
"output": {
"desc": "Kan worden gebruikt om een andere ketel in te schakelen <u>via een relais</u>.",
"enable": "Uitgang ingeschakeld",
"gpio": "GPIO",
"invertState": "Inverteer GPIO-status",
"thresholdTime": "Drempeltijd statuswijziging <small>(sec)</small>",
"events": {
"desc": "Gebeurtenissen",
"onFault": "Als de storingsstatus actief is",
"onLossConnection": "Als de verbinding via Opentherm is verbroken",
"onEnabledHeating": "Als de verwarming is ingeschakeld"
}
}
}
},
"upgrade": {
"title": "Upgrade - OpenTherm Gateway",
"name": "Upgrade",
"section": {
"backupAndRestore": "Back-up & herstel",
"backupAndRestore.desc": "In deze sectie kunt u een back-up van ALLE instellingen opslaan en herstellen.",
"upgrade": "Upgrade",
"upgrade.desc": "In deze sectie kunt u de firmware en het bestandssysteem van uw apparaat upgraden.<br />De nieuwste releases kunnen worden gedownload van de <a href=\"https://github.com/Laxilef/OTGateway/releases\" target=\"_blank\">Releases-pagina</a> van de projectrepository."
},
"note": {
"disclaimer1": "Na een succesvolle upgrade van het bestandssysteem worden ALLE instellingen teruggezet naar de standaardwaarden! Sla een back-up op voordat u gaat upgraden.",
"disclaimer2": "Na een succesvolle upgrade zal het apparaat automatisch herstarten na 15 seconden."
},
"settingsFile": "Instellingenbestand",
"fw": "Firmware",
"fs": "Bestandssysteem"
}
}
}

View File

@@ -109,8 +109,7 @@
"sConnected": "Подключение к OpenTherm", "sConnected": "Подключение к OpenTherm",
"sFlame": "Пламя", "sFlame": "Пламя",
"sCoolingActive": "Охлаждение", "sCooling": "Охлаждение",
"sCoolingSetpoint": "Охлаждение, уставка",
"sFaultActive": "Ошибка", "sFaultActive": "Ошибка",
"sFaultCode": "Код ошибки", "sFaultCode": "Код ошибки",
"sDiagActive": "Диагностика", "sDiagActive": "Диагностика",
@@ -371,11 +370,26 @@
}, },
"equitherm": { "equitherm": {
"n": "Коэффициент N", "slope": {
"k": "Коэффициент K", "title": "Наклон",
"t": { "note": "Компенсация теплопотерь. Основной параметр настройки."
},
"exponent": {
"title": "Экспонента",
"note": "Эффективность радиатора. Типичные значения: 1.1 - Тёплый пол, 1.2 - Чугунные радиаторы, 1.3 - Панельные радиаторы, 1.4 - Конвекторы."
},
"shift": {
"title": "Смещение",
"note": "Компенсирует дополнительные теплопотери (например, в трубах) или дополнительные источники тепла."
},
"targetDiffFactor": {
"title": "Коэффициент T", "title": "Коэффициент T",
"note": "Не используется, если ПИД включен" "note": "Не используется, если ПИД включен"
},
"chart": {
"targetTemp": "Целевая внутренняя температура",
"setpointTemp": "Температура теплоносителя",
"outdoorTemp": "Наружная температура"
} }
}, },
@@ -455,7 +469,6 @@
"extPump": { "extPump": {
"use": "Использовать доп. насос", "use": "Использовать доп. насос",
"gpio": "GPIO реле", "gpio": "GPIO реле",
"invertState": "Инвертировать состояние GPIO",
"postCirculationTime": "Время постциркуляции <small>(в минутах)</small>", "postCirculationTime": "Время постциркуляции <small>(в минутах)</small>",
"antiStuckInterval": "Интервал защиты от блокировки <small>(в днях)</small>", "antiStuckInterval": "Интервал защиты от блокировки <small>(в днях)</small>",
"antiStuckTime": "Время работы насоса <small>(в минутах)</small>" "antiStuckTime": "Время работы насоса <small>(в минутах)</small>"

View File

@@ -23,7 +23,6 @@
<option value="en" selected>EN</option> <option value="en" selected>EN</option>
<option value="cn">CN</option> <option value="cn">CN</option>
<option value="it">IT</option> <option value="it">IT</option>
<option value="nl">NL</option>
<option value="ru">RU</option> <option value="ru">RU</option>
</select> </select>
</li> </li>
@@ -154,14 +153,9 @@
<th scope="row" data-i18n>dashboard.states.sFlame</th> <th scope="row" data-i18n>dashboard.states.sFlame</th>
<td><i class="sFlame"></i></td> <td><i class="sFlame"></i></td>
</tr> </tr>
<tr> <tr>
<th scope="row" data-i18n>dashboard.states.sCoolingActive</th> <th scope="row" data-i18n>dashboard.states.sCooling</th>
<td><i class="sCoolingActive"></i></td> <td><i class="sCooling"></i></td>
</tr>
<tr>
<th scope="row" data-i18n>dashboard.states.sCoolingSetpoint</th>
<td><b class="sCoolingSetpoint"></b> %</td>
</tr> </tr>
@@ -563,9 +557,7 @@
result.slave.connected ? "green" : "red" result.slave.connected ? "green" : "red"
); );
setState('.sFlame', result.slave.flame); setState('.sFlame', result.slave.flame);
setState('.sCooling', result.slave.cooling);
setState('.sCoolingActive', result.slave.cooling.active);
setValue('.sCoolingSetpoint', result.slave.cooling.setpoint);
setValue('.sModMin', result.slave.modulation.min); setValue('.sModMin', result.slave.modulation.min);
setValue('.sModMax', result.slave.modulation.max); setValue('.sModMax', result.slave.modulation.max);

View File

@@ -23,7 +23,6 @@
<option value="en" selected>EN</option> <option value="en" selected>EN</option>
<option value="cn">CN</option> <option value="cn">CN</option>
<option value="it">IT</option> <option value="it">IT</option>
<option value="nl">NL</option>
<option value="ru">RU</option> <option value="ru">RU</option>
</select> </select>
</li> </li>

View File

@@ -23,7 +23,6 @@
<option value="en" selected>EN</option> <option value="en" selected>EN</option>
<option value="cn">CN</option> <option value="cn">CN</option>
<option value="it">IT</option> <option value="it">IT</option>
<option value="nl">NL</option>
<option value="ru">RU</option> <option value="ru">RU</option>
</select> </select>
</li> </li>

View File

@@ -23,7 +23,6 @@
<option value="en" selected>EN</option> <option value="en" selected>EN</option>
<option value="cn">CN</option> <option value="cn">CN</option>
<option value="it">IT</option> <option value="it">IT</option>
<option value="nl">NL</option>
<option value="ru">RU</option> <option value="ru">RU</option>
</select> </select>
</li> </li>
@@ -241,7 +240,9 @@
setCheckboxValue("[name='filtering']", data.filtering, sensorForm); setCheckboxValue("[name='filtering']", data.filtering, sensorForm);
setInputValue("[name='filteringFactor']", data.filteringFactor, {}, sensorForm); setInputValue("[name='filteringFactor']", data.filteringFactor, {}, sensorForm);
sensorForm.querySelector("[name='type']").dispatchEvent(new Event("change")); setTimeout(() => {
sensorForm.querySelector("[name='type']").dispatchEvent(new Event("change"));
}, 10);
setBusy(".form-busy", "form", false, sensorNode); setBusy(".form-busy", "form", false, sensorNode);
}; };

View File

@@ -23,7 +23,6 @@
<option value="en" selected>EN</option> <option value="en" selected>EN</option>
<option value="cn">CN</option> <option value="cn">CN</option>
<option value="it">IT</option> <option value="it">IT</option>
<option value="nl">NL</option>
<option value="ru">RU</option> <option value="ru">RU</option>
</select> </select>
</li> </li>
@@ -341,7 +340,7 @@
</details> </details>
<hr /> <hr />
<details> <details>
<summary><b data-i18n>settings.section.equitherm</b></summary> <summary><b data-i18n>settings.section.equitherm</b></summary>
<div> <div>
@@ -354,21 +353,44 @@
</label> </label>
</fieldset> </fieldset>
<div>
<div>
<canvas id="etChart"></canvas>
</div>
<label>
<div>
<span data-i18n>settings.equitherm.chart.targetTemp</span>: <b class="etChartTargetTempValue"></b>°
</div>
<input class="etChartTargetTemp" type="range" value="0" min="0" max="0" step="0.5">
</label>
</div>
<div class="grid"> <div class="grid">
<label> <label>
<span data-i18n>settings.equitherm.n</span> <span data-i18n>settings.equitherm.slope.title</span>
<input type="number" inputmode="decimal" name="equitherm[n_factor]" min="0.001" max="10" step="0.001" required> <input type="number" inputmode="decimal" name="equitherm[slope]" min="0.001" max="10" step="0.001" required>
<small data-i18n>settings.equitherm.slope.note</small>
</label> </label>
<label> <label>
<span data-i18n>settings.equitherm.k</span> <span data-i18n>settings.equitherm.exponent.title</span>
<input type="number" inputmode="decimal" name="equitherm[k_factor]" min="0" max="10" step="0.01" required> <input type="number" inputmode="decimal" name="equitherm[exponent]" min="0.1" max="2" step="0.001" required>
<small data-i18n>settings.equitherm.exponent.note</small>
</label>
</div>
<div class="grid">
<label>
<span data-i18n>settings.equitherm.shift.title</span>
<input type="number" inputmode="decimal" name="equitherm[shift]" min="-15" max="15" step="0.01" required>
<small data-i18n>settings.equitherm.shift.note</small>
</label> </label>
<label> <label>
<span data-i18n>settings.equitherm.t.title</span> <span data-i18n>settings.equitherm.targetDiffFactor.title</span>
<input type="number" inputmode="decimal" name="equitherm[t_factor]" min="0" max="10" step="0.01" required> <input type="number" inputmode="decimal" name="equitherm[targetDiffFactor]" min="0" max="10" step="0.01" required>
<small data-i18n>settings.equitherm.t.note</small> <small data-i18n>settings.equitherm.targetDiffFactor.note</small>
</label> </label>
</div> </div>
@@ -378,7 +400,7 @@
</details> </details>
<hr /> <hr />
<details> <details>
<summary><b data-i18n>settings.section.pid</b></summary> <summary><b data-i18n>settings.section.pid</b></summary>
<div> <div>
@@ -731,11 +753,6 @@
<input type="checkbox" name="externalPump[use]" value="true"> <input type="checkbox" name="externalPump[use]" value="true">
<span data-i18n>settings.extPump.use</span> <span data-i18n>settings.extPump.use</span>
</label> </label>
<label>
<input type="checkbox" name="externalPump[invertState]" value="true">
<span data-i18n>settings.externalPump.invertState</span>
</label>
</fieldset> </fieldset>
<div class="grid"> <div class="grid">
@@ -866,11 +883,163 @@
</footer> </footer>
<script src="/static/app.js?{BUILD_TIME}"></script> <script src="/static/app.js?{BUILD_TIME}"></script>
<script src="/static/chart.js?{BUILD_TIME}"></script>
<script> <script>
document.addEventListener('DOMContentLoaded', async () => { document.addEventListener('DOMContentLoaded', async () => {
const lang = new Lang(document.getElementById('lang')); const lang = new Lang(document.getElementById('lang'));
lang.build(); lang.build();
let etChart = null;
let etChartConfig = {
slope: null,
exponent: null,
shift: null,
unitSystem: null,
targetTemp: null,
minTemp: null,
maxTemp: null,
decimated: false
};
const hasNeedDecimationChart = () => {
return window.innerWidth <= 800;
}
const makeEquithermChart = () => {
if (etChart == null) {
const ctx = document.getElementById('etChart').getContext('2d');
try {
etChart = new Chart(ctx, {
type: 'line',
data: {
datasets: [{
borderColor: (context) => {
const chart = context.chart;
const {ctx, chartArea} = chart;
if (!chartArea) {
return;
}
const gradient = ctx.createLinearGradient(0, chartArea.bottom, 0, chartArea.top);
gradient.addColorStop(0, 'rgba(1, 114, 173, 1)');
gradient.addColorStop(0.5, 'rgba(255, 99, 132, 1)');
return gradient;
},
borderWidth: 3,
fill: false,
tension: 0.1,
pointRadius: 2,
pointHoverRadius: 4,
indexAxis: "x",
data: []
}]
},
options: {
responsive: true,
resizeDelay: 500,
parsing: false,
interaction: {
mode: 'nearest',
intersect: false
},
plugins: {
tooltip: {
enabled: true,
position: 'nearest',
displayColors: false,
callbacks: {
title: (items) => {
return `${i18n("settings.equitherm.chart.outdoorTemp")}: ${items[0].label}`;
}
}
},
legend: {
display: false
}
},
scales: {
x: {
display: true,
type: "linear",
reverse: true,
title: {
display: true
},
ticks: {
stepSize: 1,
format: {
style: "unit",
unit: "degree",
unitDisplay: "narrow"
}
}
},
y: {
display: true,
title: {
display: true
},
ticks: {
format: {
style: "unit",
unit: "degree",
unitDisplay: "narrow"
}
}
}
}
}
});
} catch (error) {
console.log(error);
}
}
if (!etChart) {
return;
}
let data = [];
etChartConfig.decimated = hasNeedDecimationChart();
for (let value = 30; value >= -30; value -= etChartConfig.decimated ? 2 : 1) {
const outdoorTemp = etChartConfig.unitSystem == 0 ? value : c2f(value);
data.push({
x: parseFloat(outdoorTemp.toFixed(1)),
y: parseFloat(calculateEquithermTemp(outdoorTemp).toFixed(1))
});
}
etChart.data.datasets[0].data = data;
etChart.data.datasets[0].label = i18n("settings.equitherm.chart.setpointTemp");
etChart.options.scales.x.title.text = i18n("settings.equitherm.chart.outdoorTemp");
etChart.options.scales.y.title.text = i18n("settings.equitherm.chart.setpointTemp");
etChart.update();
}
const calculateEquithermTemp = (outdoorTemp) => {
const tempDelta = etChartConfig.targetTemp - outdoorTemp;
const maxPoint = etChartConfig.targetTemp - (
etChartConfig.maxTemp - etChartConfig.targetTemp
) / etChartConfig.slope;
const sf = (etChartConfig.maxTemp - etChartConfig.targetTemp) / Math.pow(
etChartConfig.targetTemp - maxPoint,
1 / etChartConfig.exponent
);
const result = etChartConfig.targetTemp + etChartConfig.shift + sf * (
tempDelta >= 0
? Math.pow(tempDelta, 1 / etChartConfig.exponent)
: -(Math.pow(-(tempDelta), 1 / etChartConfig.exponent))
);
return Math.max(Math.min(result, etChartConfig.maxTemp), etChartConfig.minTemp);
}
const fillData = (data) => { const fillData = (data) => {
// System // System
setSelectValue("[name='system[logLevel]']", data.system.logLevel); setSelectValue("[name='system[logLevel]']", data.system.logLevel);
@@ -933,7 +1102,6 @@
// Extpump // Extpump
setCheckboxValue("[name='externalPump[use]']", data.externalPump.use); setCheckboxValue("[name='externalPump[use]']", data.externalPump.use);
setInputValue("[name='externalPump[gpio]']", data.externalPump.gpio < 255 ? data.externalPump.gpio : ''); setInputValue("[name='externalPump[gpio]']", data.externalPump.gpio < 255 ? data.externalPump.gpio : '');
setCheckboxValue("[name='externalPump[invertState]']", data.externalPump.invertState);
setInputValue("[name='externalPump[postCirculationTime]']", data.externalPump.postCirculationTime); setInputValue("[name='externalPump[postCirculationTime]']", data.externalPump.postCirculationTime);
setInputValue("[name='externalPump[antiStuckInterval]']", data.externalPump.antiStuckInterval); setInputValue("[name='externalPump[antiStuckInterval]']", data.externalPump.antiStuckInterval);
setInputValue("[name='externalPump[antiStuckTime]']", data.externalPump.antiStuckTime); setInputValue("[name='externalPump[antiStuckTime]']", data.externalPump.antiStuckTime);
@@ -1019,9 +1187,10 @@
// Equitherm // Equitherm
setCheckboxValue("[name='equitherm[enabled]']", data.equitherm.enabled); setCheckboxValue("[name='equitherm[enabled]']", data.equitherm.enabled);
setInputValue("[name='equitherm[n_factor]']", data.equitherm.n_factor); setInputValue("[name='equitherm[slope]']", data.equitherm.slope);
setInputValue("[name='equitherm[k_factor]']", data.equitherm.k_factor); setInputValue("[name='equitherm[exponent]']", data.equitherm.exponent);
setInputValue("[name='equitherm[t_factor]']", data.equitherm.t_factor); setInputValue("[name='equitherm[shift]']", data.equitherm.shift);
setInputValue("[name='equitherm[targetDiffFactor]']", data.equitherm.targetDiffFactor);
setBusy('#equitherm-settings-busy', '#equitherm-settings', false); setBusy('#equitherm-settings-busy', '#equitherm-settings', false);
// PID // PID
@@ -1045,6 +1214,24 @@
setInputValue("[name='pid[deadband][thresholdHigh]']", data.pid.deadband.thresholdHigh); setInputValue("[name='pid[deadband][thresholdHigh]']", data.pid.deadband.thresholdHigh);
setInputValue("[name='pid[deadband][thresholdLow]']", data.pid.deadband.thresholdLow); setInputValue("[name='pid[deadband][thresholdLow]']", data.pid.deadband.thresholdLow);
setBusy('#pid-settings-busy', '#pid-settings', false); setBusy('#pid-settings-busy', '#pid-settings', false);
const etMinTemp = parseInt(data.system.unitSystem == 0 ? 5 : 41);
const etMaxTemp = parseInt(data.system.unitSystem == 0 ? 30 : 86);
const etTargetTemp = constrain(parseFloat(data.heating.target), etMinTemp, etMaxTemp);
setInputValue(".etChartTargetTemp", etTargetTemp.toFixed(1), {
"min": etMinTemp,
"max": etMaxTemp
});
etChartConfig.slope = data.equitherm.slope;
etChartConfig.exponent = data.equitherm.exponent;
etChartConfig.shift = data.equitherm.shift;
etChartConfig.unitSystem = data.system.unitSystem;
etChartConfig.minTemp = data.heating.minTemp;
etChartConfig.maxTemp = data.heating.maxTemp;
makeEquithermChart();
}; };
try { try {
@@ -1097,6 +1284,57 @@
} catch (error) { } catch (error) {
console.log(error); console.log(error);
} }
document.querySelector(".etChartTargetTemp").addEventListener("input", async (event) => {
setValue('.etChartTargetTempValue', parseFloat(event.target.value).toFixed(1));
});
document.querySelector(".etChartTargetTemp").addEventListener("change", async (event) => {
if (!event.target.checkValidity()) {
return;
}
etChartConfig.targetTemp = parseFloat(event.target.value);
setValue('.etChartTargetTempValue', etChartConfig.targetTemp.toFixed(1));
makeEquithermChart();
});
document.querySelector("[name='equitherm[slope]']").addEventListener("change", async (event) => {
if (!event.target.checkValidity()) {
return;
}
etChartConfig.slope = parseFloat(event.target.value);
makeEquithermChart();
});
document.querySelector("[name='equitherm[exponent]']").addEventListener("change", async (event) => {
if (!event.target.checkValidity()) {
return;
}
etChartConfig.exponent = parseFloat(event.target.value);
makeEquithermChart();
});
document.querySelector("[name='equitherm[shift]']").addEventListener("change", async (event) => {
if (!event.target.checkValidity()) {
return;
}
etChartConfig.shift = parseFloat(event.target.value);
makeEquithermChart();
});
window.addEventListener('resize', async (event) => {
if (etChart) {
etChart.resize();
if (etChartConfig.decimated != hasNeedDecimationChart()) {
makeEquithermChart();
}
}
});
}); });
</script> </script>
</body> </body>

View File

@@ -23,7 +23,6 @@
<option value="en" selected>EN</option> <option value="en" selected>EN</option>
<option value="cn">CN</option> <option value="cn">CN</option>
<option value="it">IT</option> <option value="it">IT</option>
<option value="nl">NL</option>
<option value="ru">RU</option> <option value="ru">RU</option>
</select> </select>
</li> </li>
@@ -62,19 +61,19 @@
<form action="/api/upgrade" id="upgrade"> <form action="/api/upgrade" id="upgrade">
<fieldset class="primary"> <fieldset class="primary">
<label> <label for="firmware-file">
<span data-i18n>upgrade.fw</span>: <span data-i18n>upgrade.fw</span>:
<div class="grid"> <div class="grid">
<input type="file" name="fw" accept=".bin"> <input type="file" name="firmware" id="firmware-file" accept=".bin">
<button type="button" class="fwResult hidden" disabled></button> <button type="button" class="upgrade-firmware-result hidden" disabled></button>
</div> </div>
</label> </label>
<label> <label for="filesystem-file">
<span data-i18n>upgrade.fs</span>: <span data-i18n>upgrade.fs</span>:
<div class="grid"> <div class="grid">
<input type="file" name="fs" accept=".bin"> <input type="file" name="filesystem" id="filesystem-file" accept=".bin">
<button type="button" class="fsResult hidden" disabled></button> <button type="button" class="upgrade-filesystem-result hidden" disabled></button>
</div> </div>
</label> </label>
</fieldset> </fieldset>
@@ -108,123 +107,7 @@
lang.build(); lang.build();
setupRestoreBackupForm('#restore'); setupRestoreBackupForm('#restore');
setupUpgradeForm('#upgrade');
const upgradeForm = document.querySelector('#upgrade');
if (upgradeForm) {
upgradeForm.reset();
const statusToText = (status) => {
switch (status) {
case 0:
return "None";
case 1:
return "No file";
case 2:
return "Success";
case 3:
return "Prohibited";
case 4:
return "Size mismatch";
case 5:
return "Error on start";
case 6:
return "Error on write";
case 7:
return "Error on finish";
default:
return "Unknown";
}
};
upgradeForm.addEventListener('submit', async (event) => {
event.preventDefault();
hide('.fwResult');
hide('.fsResult');
let button = upgradeForm.querySelector('button[type="submit"]');
button.textContent = i18n('button.uploading');
button.setAttribute('disabled', true);
button.setAttribute('aria-busy', true);
try {
let fd = new FormData();
const fw = upgradeForm.querySelector("[name='fw']").files;
if (fw.length > 0) {
fd.append("fw_size", fw[0].size);
fd.append("fw", fw[0]);
}
const fs = upgradeForm.querySelector("[name='fs']").files;
if (fs.length > 0) {
fd.append("fs_size", fs[0].size);
fd.append("fs", fs[0]);
}
let response = await fetch(upgradeForm.action, {
method: "POST",
cache: "no-cache",
credentials: "include",
body: fd
});
if (response.status != 202 && response.status != 406) {
throw new Error('Response not valid');
}
const result = await response.json();
let resItem = upgradeForm.querySelector('.fwResult');
if (resItem && result.firmware.status > 1) {
resItem.textContent = statusToText(result.firmware.status);
resItem.classList.remove('hidden');
if (result.firmware.status == 2) {
resItem.classList.remove('failed');
resItem.classList.add('success');
} else {
resItem.classList.remove('success');
resItem.classList.add('failed');
if (result.firmware.error != "") {
resItem.textContent += `: ${result.firmware.error}`;
}
}
}
resItem = upgradeForm.querySelector('.fsResult');
if (resItem && result.filesystem.status > 1) {
resItem.textContent = statusToText(result.filesystem.status);
resItem.classList.remove('hidden');
if (result.filesystem.status == 2) {
resItem.classList.remove('failed');
resItem.classList.add('success');
} else {
resItem.classList.remove('success');
resItem.classList.add('failed');
if (result.filesystem.error != "") {
resItem.textContent += `: ${result.filesystem.error}`;
}
}
}
} catch (err) {
console.log(err);
button.textContent = i18n('button.error');
button.classList.add('failed');
} finally {
setTimeout(() => {
button.removeAttribute('aria-busy');
button.removeAttribute('disabled');
button.classList.remove('success', 'failed');
button.textContent = i18n(button.dataset.i18n);
upgradeForm.reset();
}, 10000);
}
});
}
}); });
</script> </script>
</body> </body>

14
src_data/scripts/chart.js Normal file

File diff suppressed because one or more lines are too long

View File

@@ -5,8 +5,13 @@ const setupForm = (formSelector, onResultCallback = null, noCastItems = []) => {
} }
form.querySelectorAll('input').forEach(item => { form.querySelectorAll('input').forEach(item => {
item.addEventListener('change', (e) => { item.addEventListener('change', (event) => {
e.target.setAttribute('aria-invalid', !e.target.checkValidity()); if (!event.target.checkValidity()) {
event.target.setAttribute('aria-invalid', true);
} else if (event.target.hasAttribute('aria-invalid')) {
event.target.removeAttribute('aria-invalid');
}
}) })
}); });
@@ -630,6 +635,10 @@ const setCheckboxValue = (selector, value, parent = undefined) => {
} }
item.checked = value; item.checked = value;
setTimeout(() => {
item.dispatchEvent(new Event("change"));
}, 10);
} }
const setRadioValue = (selector, value, parent = undefined) => { const setRadioValue = (selector, value, parent = undefined) => {
@@ -643,7 +652,14 @@ const setRadioValue = (selector, value, parent = undefined) => {
} }
for (let item of items) { for (let item of items) {
item.checked = item.value == value; const checked = item.value == value;
if (item.checked != checked) {
item.checked = checked;
setTimeout(() => {
item.dispatchEvent(new Event("change"));
}, 10);
}
} }
} }
@@ -658,13 +674,17 @@ const setInputValue = (selector, value, attrs = {}, parent = undefined) => {
} }
for (let item of items) { for (let item of items) {
item.value = value;
if (attrs instanceof Object) { if (attrs instanceof Object) {
for (let attrKey of Object.keys(attrs)) { for (let attrKey of Object.keys(attrs)) {
item.setAttribute(attrKey, attrs[attrKey]); item.setAttribute(attrKey, attrs[attrKey]);
} }
} }
item.value = value;
setTimeout(() => {
item.dispatchEvent(new Event("change"));
}, 10);
} }
} }
@@ -853,4 +873,12 @@ function dec2hex(i) {
function constrain(amt, low, high) { function constrain(amt, low, high) {
return ((amt) < (low) ? (low) : ((amt) > (high) ? (high) : (amt))); return ((amt) < (low) ? (low) : ((amt) > (high) ? (high) : (amt)));
}
function c2f(value) {
return (9 / 5) * value + 32;
}
function f2c(value) {
return (value - 32) * (5 / 9);
} }