Heap fragmentation optimization

Moving object creation to task constructors
This commit is contained in:
Yurii
2023-12-16 05:05:37 +03:00
parent 214e840ec2
commit 7149f52d62
10 changed files with 244 additions and 137 deletions

View File

@@ -18,20 +18,44 @@ const char S_SENSORS_BLE[] PROGMEM = "SENSORS.BLE";
class SensorsTask : public LeanTask {
public:
SensorsTask(bool _enabled = false, unsigned long _interval = 0) : LeanTask(_enabled, _interval) {}
SensorsTask(bool _enabled = false, unsigned long _interval = 0) : LeanTask(_enabled, _interval) {
this->oneWireOutdoorSensor = new OneWire();
this->outdoorSensor = new DallasTemperature(this->oneWireOutdoorSensor);
this->oneWireIndoorSensor = new OneWire();
this->indoorSensor = new DallasTemperature(this->oneWireIndoorSensor);
}
~SensorsTask() {
if (this->outdoorSensor != nullptr) {
delete this->outdoorSensor;
}
if (this->oneWireOutdoorSensor != nullptr) {
delete this->oneWireOutdoorSensor;
}
if (this->indoorSensor != nullptr) {
delete this->indoorSensor;
}
if (this->oneWireIndoorSensor != nullptr) {
delete this->oneWireIndoorSensor;
}
}
protected:
OneWire* oneWireOutdoorSensor;
OneWire* oneWireIndoorSensor;
OneWire* oneWireOutdoorSensor = nullptr;
OneWire* oneWireIndoorSensor = nullptr;
DallasTemperature* outdoorSensor;
DallasTemperature* indoorSensor;
DallasTemperature* outdoorSensor = nullptr;
DallasTemperature* indoorSensor = nullptr;
bool initOutdoorSensor = false;
unsigned long startOutdoorConversionTime = 0;
float filteredOutdoorTemp = 0;
bool emptyOutdoorTemp = true;
bool initIndoorSensor = false;
unsigned long startIndoorConversionTime = 0;
float filteredIndoorTemp = 0;
@@ -123,27 +147,27 @@ protected:
#endif
void outdoorTemperatureSensor() {
if (!initOutdoorSensor) {
oneWireOutdoorSensor = new OneWire(settings.sensors.outdoor.pin);
outdoorSensor = new DallasTemperature(oneWireOutdoorSensor);
outdoorSensor->begin();
outdoorSensor->setResolution(12);
outdoorSensor->setWaitForConversion(false);
outdoorSensor->requestTemperatures();
startOutdoorConversionTime = millis();
initOutdoorSensor = true;
if (!this->initOutdoorSensor) {
this->oneWireOutdoorSensor->begin(settings.sensors.outdoor.pin);
this->outdoorSensor->begin();
this->outdoorSensor->setResolution(12);
this->outdoorSensor->setWaitForConversion(false);
this->outdoorSensor->requestTemperatures();
this->startOutdoorConversionTime = millis();
this->initOutdoorSensor = true;
}
unsigned long estimateConversionTime = millis() - startOutdoorConversionTime;
if (estimateConversionTime < outdoorSensor->millisToWaitForConversion()) {
unsigned long estimateConversionTime = millis() - this->startOutdoorConversionTime;
if (estimateConversionTime < this->outdoorSensor->millisToWaitForConversion()) {
return;
}
bool completed = outdoorSensor->isConversionComplete();
bool completed = this->outdoorSensor->isConversionComplete();
if (!completed && estimateConversionTime >= 1000) {
// fail, retry
outdoorSensor->requestTemperatures();
startOutdoorConversionTime = millis();
this->outdoorSensor->requestTemperatures();
this->startOutdoorConversionTime = millis();
Log.serrorln(FPSTR(S_SENSORS_OUTDOOR), F("Could not read temperature data (no response)"));
}
@@ -152,55 +176,55 @@ protected:
return;
}
float rawTemp = outdoorSensor->getTempCByIndex(0);
float rawTemp = this->outdoorSensor->getTempCByIndex(0);
if (rawTemp == DEVICE_DISCONNECTED_C) {
Log.serrorln(FPSTR(S_SENSORS_OUTDOOR), F("Could not read temperature data (not connected)"));
} else {
Log.straceln(FPSTR(S_SENSORS_OUTDOOR), F("Raw temp: %f"), rawTemp);
if (emptyOutdoorTemp) {
filteredOutdoorTemp = rawTemp;
emptyOutdoorTemp = false;
if (this->emptyOutdoorTemp) {
this->filteredOutdoorTemp = rawTemp;
this->emptyOutdoorTemp = false;
} else {
filteredOutdoorTemp += (rawTemp - filteredOutdoorTemp) * EXT_SENSORS_FILTER_K;
this->filteredOutdoorTemp += (rawTemp - this->filteredOutdoorTemp) * EXT_SENSORS_FILTER_K;
}
filteredOutdoorTemp = floor(filteredOutdoorTemp * 100) / 100;
this->filteredOutdoorTemp = floor(this->filteredOutdoorTemp * 100) / 100;
if (fabs(vars.temperatures.outdoor - filteredOutdoorTemp) > 0.099) {
vars.temperatures.outdoor = filteredOutdoorTemp + settings.sensors.outdoor.offset;
Log.sinfoln(FPSTR(S_SENSORS_OUTDOOR), F("New temp: %f"), filteredOutdoorTemp);
if (fabs(vars.temperatures.outdoor - this->filteredOutdoorTemp) > 0.099) {
vars.temperatures.outdoor = this->filteredOutdoorTemp + settings.sensors.outdoor.offset;
Log.sinfoln(FPSTR(S_SENSORS_OUTDOOR), F("New temp: %f"), this->filteredOutdoorTemp);
}
}
outdoorSensor->requestTemperatures();
startOutdoorConversionTime = millis();
this->outdoorSensor->requestTemperatures();
this->startOutdoorConversionTime = millis();
}
void indoorTemperatureSensor() {
if (!initIndoorSensor) {
oneWireIndoorSensor = new OneWire(settings.sensors.indoor.pin);
indoorSensor = new DallasTemperature(oneWireIndoorSensor);
indoorSensor->begin();
indoorSensor->setResolution(12);
indoorSensor->setWaitForConversion(false);
indoorSensor->requestTemperatures();
startIndoorConversionTime = millis();
initIndoorSensor = true;
if (!this->initIndoorSensor) {
this->oneWireIndoorSensor->begin(settings.sensors.indoor.pin);
this->indoorSensor->begin();
this->indoorSensor->setResolution(12);
this->indoorSensor->setWaitForConversion(false);
this->indoorSensor->requestTemperatures();
this->startIndoorConversionTime = millis();
this->initIndoorSensor = true;
}
unsigned long estimateConversionTime = millis() - startIndoorConversionTime;
if (estimateConversionTime < indoorSensor->millisToWaitForConversion()) {
unsigned long estimateConversionTime = millis() - this->startIndoorConversionTime;
if (estimateConversionTime < this->indoorSensor->millisToWaitForConversion()) {
return;
}
bool completed = indoorSensor->isConversionComplete();
bool completed = this->indoorSensor->isConversionComplete();
if (!completed && estimateConversionTime >= 1000) {
// fail, retry
indoorSensor->requestTemperatures();
startIndoorConversionTime = millis();
this->indoorSensor->requestTemperatures();
this->startIndoorConversionTime = millis();
Log.serrorln(FPSTR(S_SENSORS_INDOOR), F("Could not read temperature data (no response)"));
}
@@ -209,30 +233,30 @@ protected:
return;
}
float rawTemp = indoorSensor->getTempCByIndex(0);
float rawTemp = this->indoorSensor->getTempCByIndex(0);
if (rawTemp == DEVICE_DISCONNECTED_C) {
Log.serrorln(FPSTR(S_SENSORS_INDOOR), F("Could not read temperature data (not connected)"));
} else {
Log.straceln(FPSTR(S_SENSORS_INDOOR), F("Raw temp: %f"), rawTemp);
if (emptyIndoorTemp) {
filteredIndoorTemp = rawTemp;
emptyIndoorTemp = false;
if (this->emptyIndoorTemp) {
this->filteredIndoorTemp = rawTemp;
this->emptyIndoorTemp = false;
} else {
filteredIndoorTemp += (rawTemp - filteredIndoorTemp) * EXT_SENSORS_FILTER_K;
this->filteredIndoorTemp += (rawTemp - this->filteredIndoorTemp) * EXT_SENSORS_FILTER_K;
}
filteredIndoorTemp = floor(filteredIndoorTemp * 100) / 100;
this->filteredIndoorTemp = floor(this->filteredIndoorTemp * 100) / 100;
if (fabs(vars.temperatures.indoor - filteredIndoorTemp) > 0.099) {
vars.temperatures.indoor = filteredIndoorTemp + settings.sensors.indoor.offset;
Log.sinfoln(FPSTR(S_SENSORS_INDOOR), F("New temp: %f"), filteredIndoorTemp);
if (fabs(vars.temperatures.indoor - this->filteredIndoorTemp) > 0.099) {
vars.temperatures.indoor = this->filteredIndoorTemp + settings.sensors.indoor.offset;
Log.sinfoln(FPSTR(S_SENSORS_INDOOR), F("New temp: %f"), this->filteredIndoorTemp);
}
}
indoorSensor->requestTemperatures();
startIndoorConversionTime = millis();
this->indoorSensor->requestTemperatures();
this->startIndoorConversionTime = millis();
}
};