Files
MyOwnEtherCATDevice/Cards/EaserCAT-7000-DIO+I2C/Firmware/src/main.cpp
2025-02-20 14:45:18 +01:00

325 lines
9.1 KiB
C++
Executable File

#include <Arduino.h>
#include <stdio.h>
extern "C"
{
#include "ecat_slv.h"
#include "utypes.h"
};
_Objects Obj;
#include "extend32to64.h"
extend32to64 longTime;
volatile uint64_t irqTime = 0;
HardwareSerial Serial1(PA10, PA9);
uint8_t inputPin[] = {PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PB15, PB14, PB13, PB12};
uint8_t outputPin[] = {PE10, PE9, PE8, PE7};
const uint32_t I2C_BUS_SPEED = 400000;
uint32_t I2C_restarts = 0;
const uint8_t MCP3221_TYPE = 1, ADS1014_TYPE = 2;
int8_t old_I2Cdevice = -1;
#include "Wire.h"
TwoWire Wire2(PB11, PB10);
#include "MyMCP3221.h"
MyMCP3221 *mcp3221 = 0;
#include "ADS1X15.h"
ADS1014 *ads1014 = 0;
void ads1014_reset()
{
ads1014->reset();
ads1014->begin();
ads1014->setGain(1); // 1=4.096V
ads1014->setMode(0); // 0 continuous
ads1014->setDataRate(6); // Max for ads101x
ads1014->readADC_Differential_0_1(); // This is the value we are interested in
}
#define bitset(byte, nbit) ((byte) |= (1 << (nbit)))
#define bitclear(byte, nbit) ((byte) &= ~(1 << (nbit)))
#define bitflip(byte, nbit) ((byte) ^= (1 << (nbit)))
#define bitcheck(byte, nbit) ((byte) & (1 << (nbit)))
volatile uint16_t ALEventIRQ; // ALEvent that caused the interrupt
void cb_set_outputs(void) // Get Master outputs, slave inputs, first operation
{
// Update digital output pins
for (int i = 0; i < sizeof(outputPin); i++)
digitalWrite(outputPin[i], bitcheck(Obj.Output4, i) ? HIGH : LOW);
}
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
{
static float validData0 = 0.0, validVoltage0 = 0.0;
for (int i = 0; i < sizeof(inputPin); i++)
Obj.Input12 = digitalRead(inputPin[i]) == HIGH ? bitset(Obj.Input12, i) : bitclear(Obj.Input12, i);
float scale = Obj.VoltageScale;
if (scale == 0.0)
scale = 1.0;
int stat, data0;
switch (Obj.I2C_devicetype)
{
case 0: // Not configured.
Obj.Status = 0;
stat = data0 = 0;
break;
case MCP3221_TYPE:
if (old_I2Cdevice != Obj.I2C_devicetype) // Initilize and make ready
{
if (ads1014)
{
delete ads1014;
ads1014 = 0;
}
if (mcp3221)
{
delete mcp3221;
mcp3221 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
mcp3221 = new MyMCP3221(Obj.I2C_address, &Wire2);
old_I2Cdevice = mcp3221 ? MCP3221_TYPE : -1;
}
data0 = mcp3221->getData();
stat = mcp3221->ping();
break;
case ADS1014_TYPE:
if (ads1014)
{
delete ads1014;
ads1014 = 0;
}
if (mcp3221)
{
delete mcp3221;
mcp3221 = 0;
}
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
ads1014 = new ADS1014(Obj.I2C_address, &Wire2);
ads1014_reset();
old_I2Cdevice = ads1014 ? ADS1014_TYPE : -1;
data0 = ads1014->getValue();
stat = ads1014->isConnected();
break;
default: // Not supported
break;
}
if (stat == 0)
{ // Read good value
Obj.CalculatedVoltage = scale * data0 + Obj.VoltageOffset; //
Obj.RawData = data0; // Raw voltage, read by ADC
validVoltage0 = Obj.CalculatedVoltage;
validData0 = data0;
}
else
{ // Didn't read a good value. Return a hopefully useful value and restart the I2C bus
Obj.CalculatedVoltage = validVoltage0; // Use value from previous call
Obj.RawData = validData0;
// Reset wire here
Wire2.end();
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
I2C_restarts++;
if (Obj.I2C_devicetype == ADS1014_TYPE)
ads1014_reset();
// mcp3221 has no reset, reset the I2C bus is the best we can do
}
Obj.Status = I2C_restarts + (stat << 28); // Put status as bits 28-31, the lower are number of restarts (restart attempts)
Obj.Status = Obj.I2C_devicetype + Obj.I2C_address;
}
void ESC_interrupt_enable(uint32_t mask);
void ESC_interrupt_disable(uint32_t mask);
uint16_t dc_checker(void);
void sync0Handler(void);
static esc_cfg_t config =
{
.user_arg = NULL,
.use_interrupt = 1,
.watchdog_cnt = 150,
.set_defaults_hook = NULL,
.pre_state_change_hook = NULL,
.post_state_change_hook = NULL,
.application_hook = NULL,
.safeoutput_override = NULL,
.pre_object_download_hook = NULL,
.post_object_download_hook = NULL,
.rxpdo_override = NULL,
.txpdo_override = NULL,
.esc_hw_interrupt_enable = ESC_interrupt_enable,
.esc_hw_interrupt_disable = ESC_interrupt_disable,
.esc_hw_eep_handler = NULL,
.esc_check_dc_handler = dc_checker,
};
volatile byte serveIRQ = 0;
void setup(void)
{
Serial1.begin(115200);
for (int i = 0; i < sizeof(inputPin); i++)
pinMode(inputPin[i], INPUT_PULLDOWN);
for (int i = 0; i < sizeof(outputPin); i++)
{
pinMode(outputPin[i], OUTPUT);
digitalWrite(outputPin[i], LOW);
}
// Debug leds
pinMode(PB4, OUTPUT);
pinMode(PB5, OUTPUT);
pinMode(PB6, OUTPUT);
pinMode(PB7, OUTPUT);
digitalWrite(PB4, LOW);
digitalWrite(PB5, LOW);
digitalWrite(PB6, LOW);
digitalWrite(PB7, LOW);
Wire2.begin();
Wire2.setClock(I2C_BUS_SPEED);
#ifdef ADS1xxx
ads1014_reset();
#endif
#ifdef ECAT
ecat_slv_init(&config);
#endif
#if 0 // Uncomment for commissioning tests
digitalWrite(outputPin[0], HIGH); // All four output leds should go high
digitalWrite(outputPin[1], HIGH);
digitalWrite(outputPin[2], HIGH);
digitalWrite(outputPin[3], HIGH);
#ifdef ADC_MCP3221
mcp3221 = new MyMCP3221(0x48, &Wire2);
#endif
while (1) // Apply voltage over the inputs 0-11 and see response in terminal
{
int nDevices = 0;
for (int i2caddr = 1; i2caddr < 127; i2caddr++)
{
Wire2.beginTransmission(i2caddr);
int stat = Wire2.endTransmission();
if (stat == 0)
{
Serial1.printf("I2C device found at address 0x%02x\n", i2caddr);
nDevices++;
}
}
if (!nDevices)
Serial1.printf("No devices\n");
#ifdef ADC_MCP3221
Serial1.printf("I2C status=%d rawdata=%d ", mcp3221->ping(), mcp3221->getData());
#endif
#ifdef ADS1xxx
// else Serial1.printf("I2C status=%d rawdata=%d pin0=%d pin1=%d\n", ads1014.isConnected() ? 0 : -1, ads1014.readADC_Differential_0_1(), ads1014.readADC(0), ads1014.readADC(1));
// Serial1.println(ads1014.toVoltage(ads1014.readADC_Differential_0_1()), 5);
for (int i = 0; i < 10; i++)
Serial1.println(ads1014.getValue());
int dummy = 0;
uint32_t then = micros();
for (int i = 0; i < 1000; i++)
dummy += ads1014.getValue();
uint32_t now = micros();
Serial1.printf("1000 I2C readings take %d microseconds\n", now - then);
#endif
for (int i = 0; i < 12; i++)
Serial1.printf("%u", digitalRead(inputPin[i]));
Serial1.println();
delay(1000);
}
#endif
}
void loop(void)
{
#ifdef ECAT
uint64_t dTime;
if (serveIRQ)
{
DIG_process(ALEventIRQ, DIG_PROCESS_WD_FLAG | DIG_PROCESS_OUTPUTS_FLAG |
DIG_PROCESS_APP_HOOK_FLAG | DIG_PROCESS_INPUTS_FLAG);
serveIRQ = 0;
ESCvar.PrevTime = ESCvar.Time;
ecat_slv_poll();
}
dTime = longTime.extendTime(micros()) - irqTime;
if (dTime > 5000) // Not doing interrupts - handle free-run
ecat_slv();
#endif
}
void sync0Handler(void)
{
ALEventIRQ = ESC_ALeventread();
// if (ALEventIRQ & ESCREG_ALEVENT_SM2)
{
irqTime = longTime.extendTime(micros());
serveIRQ = 1;
}
}
// Enable SM2 interrupts
void ESC_interrupt_enable(uint32_t mask)
{
// Enable interrupt for SYNC0 or SM2 or SM3
uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
if (mask & user_int_mask)
{
ESC_ALeventmaskwrite(ESC_ALeventmaskread() | (mask & user_int_mask));
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM3));
attachInterrupt(digitalPinToInterrupt(PC3), sync0Handler, RISING);
// Set LAN9252 interrupt pin driver as push-pull active high
uint32_t bits = 0x00000111;
ESC_write(0x54, &bits, 4);
// Enable LAN9252 interrupt
bits = 0x00000001;
ESC_write(0x5c, &bits, 4);
}
}
// Disable SM2 interrupts
void ESC_interrupt_disable(uint32_t mask)
{
// Enable interrupt for SYNC0 or SM2 or SM3
// uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
uint32_t user_int_mask = ESCREG_ALEVENT_SM2;
if (mask & user_int_mask)
{
// Disable interrupt from SYNC0
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(mask & user_int_mask));
detachInterrupt(digitalPinToInterrupt(PC3));
// Disable LAN9252 interrupt
uint32_t bits = 0x00000000;
ESC_write(0x5c, &bits, 4);
}
}
extern "C" uint32_t ESC_SYNC0cycletime(void);
// Setup of DC
uint16_t dc_checker(void)
{
// Indicate we run DC
ESCvar.dcsync = 1;
return 0;
}