220 lines
6.7 KiB
C++
Executable File
220 lines
6.7 KiB
C++
Executable File
#include <Arduino.h>
|
|
#include <stdio.h>
|
|
extern "C"
|
|
{
|
|
#include "ecat_slv.h"
|
|
#include "utypes.h"
|
|
};
|
|
_Objects Obj;
|
|
|
|
#include "extend32to64.h"
|
|
extend32to64 longTime;
|
|
volatile uint64_t irqTime = 0;
|
|
|
|
HardwareSerial Serial1(PA10, PA9);
|
|
|
|
#include "HardwareTimer.h"
|
|
// NOTE This mod in the beginning of HardwareTimer.cpp for 32-bit precision
|
|
////// //#define MAX_RELOAD ((1 << 16) - 1) // Currently even 32b timers are used as 16b to have generic behavior
|
|
////// #define MAX_RELOAD 0xFFFFFFFF
|
|
|
|
// CAN BE PA0, should be PA0
|
|
#define THCAD_PIN PA2
|
|
// PA2 is connected to Timer 2, a 32-bit timer
|
|
|
|
uint32_t channel;
|
|
volatile uint32_t FrequencyMeasured, LastCapture = 0, CurrentCapture;
|
|
uint32_t input_freq = 0;
|
|
volatile uint32_t rolloverCompareCount = 0;
|
|
HardwareTimer *EncoderTimer;
|
|
void InputCapture_IT_callback(void);
|
|
void Rollover_IT_callback(void);
|
|
|
|
volatile uint16_t ALEventIRQ; // ALEvent that caused the interrupt
|
|
|
|
void cb_set_outputs(void) // Get Master outputs, slave inputs, first operation
|
|
{
|
|
; // Do nothing, we get Scale though.
|
|
}
|
|
|
|
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
|
|
{
|
|
Obj.Velocity = Obj.Scale * FrequencyMeasured;
|
|
}
|
|
|
|
void ESC_interrupt_enable(uint32_t mask);
|
|
void ESC_interrupt_disable(uint32_t mask);
|
|
uint16_t dc_checker(void);
|
|
void sync0Handler(void);
|
|
|
|
static esc_cfg_t config =
|
|
{
|
|
.user_arg = NULL,
|
|
.use_interrupt = 1,
|
|
.watchdog_cnt = 150,
|
|
.set_defaults_hook = NULL,
|
|
.pre_state_change_hook = NULL,
|
|
.post_state_change_hook = NULL,
|
|
.application_hook = NULL, // handleStepper,
|
|
.safeoutput_override = NULL,
|
|
.pre_object_download_hook = NULL,
|
|
.post_object_download_hook = NULL,
|
|
.rxpdo_override = NULL,
|
|
.txpdo_override = NULL,
|
|
.esc_hw_interrupt_enable = ESC_interrupt_enable,
|
|
.esc_hw_interrupt_disable = ESC_interrupt_disable,
|
|
.esc_hw_eep_handler = NULL,
|
|
.esc_check_dc_handler = dc_checker,
|
|
};
|
|
|
|
volatile byte serveIRQ = 0;
|
|
|
|
volatile uint32_t globalIRQ = 0;
|
|
void globalInt(void)
|
|
{
|
|
globalIRQ++;
|
|
}
|
|
|
|
void setup(void)
|
|
{
|
|
Serial1.begin(115200);
|
|
// Automatically retrieve TIM instance and channel associated to pin
|
|
// This is used to be compatible with all STM32 series automatically.
|
|
TIM_TypeDef *Instance = (TIM_TypeDef *)pinmap_peripheral(digitalPinToPinName(THCAD_PIN), PinMap_PWM);
|
|
channel = STM_PIN_CHANNEL(pinmap_function(digitalPinToPinName(THCAD_PIN), PinMap_PWM));
|
|
|
|
EncoderTimer = new HardwareTimer(Instance);
|
|
|
|
// Configure rising edge detection to measure frequency
|
|
EncoderTimer->setMode(channel, TIMER_INPUT_CAPTURE_RISING, THCAD_PIN);
|
|
|
|
// With a PrescalerFactor = 1, the minimum frequency value to measure is : TIM counter clock / CCR MAX
|
|
// = (SystemCoreClock) / 65535
|
|
// Example on Nucleo_L476RG with systemClock at 80MHz, the minimum frequency is around 1,2 khz
|
|
// To reduce minimum frequency, it is possible to increase prescaler. But this is at a cost of precision.
|
|
// The maximum frequency depends on processing of the interruption and thus depend on board used
|
|
// Example on Nucleo_L476RG with systemClock at 80MHz the interruption processing is around 4,5 microseconds and thus Max frequency is around 220kHz
|
|
uint32_t PrescalerFactor = 1;
|
|
EncoderTimer->setPrescaleFactor(PrescalerFactor);
|
|
EncoderTimer->setOverflow(0xFFFFFFF0); // Max Period value to have the largest possible time to detect rising edge and avoid timer rollover
|
|
EncoderTimer->attachInterrupt(channel, InputCapture_IT_callback);
|
|
EncoderTimer->attachInterrupt(Rollover_IT_callback);
|
|
EncoderTimer->resume();
|
|
|
|
// Compute this scale factor only once
|
|
input_freq = EncoderTimer->getTimerClkFreq() / EncoderTimer->getPrescaleFactor();
|
|
|
|
ecat_slv_init(&config);
|
|
attachInterrupt(digitalPinToInterrupt(PC0), globalInt, RISING);
|
|
}
|
|
|
|
void loop(void)
|
|
{
|
|
#if 0 // Sync 0 mode
|
|
uint64_t dTime;
|
|
if (serveIRQ)
|
|
{
|
|
DIG_process(ALEventIRQ, DIG_PROCESS_WD_FLAG | DIG_PROCESS_OUTPUTS_FLAG |
|
|
DIG_PROCESS_APP_HOOK_FLAG | DIG_PROCESS_INPUTS_FLAG);
|
|
serveIRQ = 0;
|
|
ESCvar.PrevTime = ESCvar.Time;
|
|
ecat_slv_poll();
|
|
}
|
|
dTime = longTime.extendTime(micros()) - irqTime;
|
|
if (dTime > 5000) // Don't run ecat_slv_poll when expecting to serve interrupt
|
|
ecat_slv_poll();
|
|
#else // Freerun mode
|
|
ecat_slv();
|
|
|
|
#endif
|
|
}
|
|
|
|
void sync0Handler(void)
|
|
{
|
|
ALEventIRQ = ESC_ALeventread();
|
|
// if (ALEventIRQ & ESCREG_ALEVENT_SM2)
|
|
{
|
|
irqTime = longTime.extendTime(micros());
|
|
serveIRQ = 1;
|
|
}
|
|
}
|
|
|
|
// Enable SM2 interrupts
|
|
void ESC_interrupt_enable(uint32_t mask)
|
|
{
|
|
// Enable interrupt for SYNC0 or SM2 or SM3
|
|
uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
|
|
if (mask & user_int_mask)
|
|
{
|
|
ESC_ALeventmaskwrite(ESC_ALeventmaskread() | (mask & user_int_mask));
|
|
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM3));
|
|
attachInterrupt(digitalPinToInterrupt(PC3), sync0Handler, RISING);
|
|
|
|
// Set LAN9252 interrupt pin driver as push-pull active high
|
|
uint32_t bits = 0x00000111;
|
|
ESC_write(0x54, &bits, 4);
|
|
|
|
// Enable LAN9252 interrupt
|
|
bits = 0x00000001;
|
|
ESC_write(0x5c, &bits, 4);
|
|
}
|
|
}
|
|
|
|
// Disable SM2 interrupts
|
|
void ESC_interrupt_disable(uint32_t mask)
|
|
{
|
|
// Enable interrupt for SYNC0 or SM2 or SM3
|
|
// uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
|
|
uint32_t user_int_mask = ESCREG_ALEVENT_SM2;
|
|
|
|
if (mask & user_int_mask)
|
|
{
|
|
// Disable interrupt from SYNC0
|
|
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(mask & user_int_mask));
|
|
detachInterrupt(digitalPinToInterrupt(PC3));
|
|
// Disable LAN9252 interrupt
|
|
uint32_t bits = 0x00000000;
|
|
ESC_write(0x5c, &bits, 4);
|
|
}
|
|
}
|
|
|
|
extern "C" uint32_t ESC_SYNC0cycletime(void);
|
|
|
|
// Setup of DC
|
|
uint16_t dc_checker(void)
|
|
{
|
|
// Indicate we run DC
|
|
ESCvar.dcsync = 1;
|
|
return 0;
|
|
}
|
|
|
|
void InputCapture_IT_callback(void)
|
|
{
|
|
CurrentCapture = EncoderTimer->getCaptureCompare(channel);
|
|
|
|
/* frequency computation */
|
|
if (CurrentCapture > LastCapture)
|
|
{
|
|
FrequencyMeasured = input_freq / (CurrentCapture - LastCapture);
|
|
}
|
|
else if (CurrentCapture <= LastCapture)
|
|
{
|
|
/* 0xFFFFFFFF is max overflow value */
|
|
FrequencyMeasured = input_freq / (0xFFFFFFFF + CurrentCapture - LastCapture);
|
|
}
|
|
LastCapture = CurrentCapture;
|
|
rolloverCompareCount = 0;
|
|
}
|
|
|
|
/* In case of timer rollover, frequency is to low to be measured set value to 0
|
|
To reduce minimum frequency, it is possible to increase prescaler. But this is at a cost of precision. */
|
|
void Rollover_IT_callback(void)
|
|
{
|
|
rolloverCompareCount++;
|
|
|
|
if (rolloverCompareCount > 1)
|
|
{
|
|
FrequencyMeasured = 0;
|
|
}
|
|
}
|