#include #include #include extern "C" { #include "ecat_slv.h" #include "utypes.h" }; #include #define RINGBUFFERLEN 101 CircularBuffer Pos; CircularBuffer TDelta; #include int64_t PreviousEncoderCounterValue = 0; int64_t unwrap_encoder(uint16_t in, int64_t *prev); Encoder EncoderInit; Encoder *encP = &EncoderInit; #define INDEX_PIN PA2 HardwareSerial Serial1(PA10, PA9); _Objects Obj; void indexPulse(void); double PosScaleRes = 1.0; uint32_t CurPosScale = 1; uint8_t OldLatchCEnable = 0; volatile uint8_t indexPulseFired = 0; volatile uint8_t pleaseZeroTheCounter = 0; #define STEPPER_DIR_PIN PA12 #define STEPPER_STEP_PIN PA11 HardwareTimer *MyTim; volatile uint32_t stepCount = 0, stepPulses = 0; volatile double_t actualPosition = 0; volatile double_t requestedPosition, requestedVelocity; uint32_t sync0CycleTime = 0; // nanoseconds void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation { if (Obj.IndexLatchEnable && !OldLatchCEnable) // Should only happen first time IndexCEnable is set { pleaseZeroTheCounter = 1; } OldLatchCEnable = Obj.IndexLatchEnable; if (CurPosScale != Obj.EncPosScale && Obj.EncPosScale != 0) { CurPosScale = Obj.EncPosScale; PosScaleRes = 1.0 / double(CurPosScale); } requestedPosition = Obj.StepGenIn1.CommandedPosition; requestedVelocity = Obj.StepGenIn1.CommandedVelocity; } void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation { Obj.IndexStatus = 0; if (indexPulseFired) { Obj.IndexStatus = 1; indexPulseFired = 0; PreviousEncoderCounterValue = 0; } // Obj.DiffT = sync0CycleTime; int64_t pos = unwrap_encoder(TIM2->CNT, &PreviousEncoderCounterValue); double CurPos = pos * PosScaleRes; Obj.EncPos = CurPos; double diffT = 0; double diffPos = 0; TDelta.push(ESCvar.Time); // Running average over the length of the circular buffer Pos.push(CurPos); if (Pos.size() >= 2) { diffT = 1.0e-9 * (TDelta.last() - TDelta.first()); // Time is in nanoseconds diffPos = fabs(Pos.last() - Pos.first()); } Obj.EncFrequency = diffT != 0 ? diffPos / diffT : 0.0; // Revolutions per second Obj.IndexByte = digitalRead(INDEX_PIN); if (Obj.IndexByte) Serial1.printf("IS 1\n"); Obj.StepGenOut1.ActualPosition = actualPosition; Obj.DiffT = 10000 * requestedPosition; // deltaT; } void ESC_interrupt_enable(uint32_t mask); void ESC_interrupt_disable(uint32_t mask); uint16_t dc_checker(void); void TimerStep_CB(void); void sync0Handler(void); void handleStepper(void); void makePulses(uint64_t cycleTime /* in usecs */, int32_t pulsesAtEnd /* nr of pulses to do*/); static esc_cfg_t config = { .user_arg = NULL, .use_interrupt = 1, .watchdog_cnt = 150, .set_defaults_hook = NULL, .pre_state_change_hook = NULL, .post_state_change_hook = NULL, .application_hook = handleStepper, .safeoutput_override = NULL, .pre_object_download_hook = NULL, .post_object_download_hook = NULL, .rxpdo_override = NULL, .txpdo_override = NULL, .esc_hw_interrupt_enable = ESC_interrupt_enable, .esc_hw_interrupt_disable = ESC_interrupt_disable, .esc_hw_eep_handler = NULL, .esc_check_dc_handler = dc_checker, }; void sync0Handler(void); volatile byte serveIRQ = 0; void setup(void) { Serial1.begin(115200); rcc_config(); TIM_TypeDef *Instance = TIM1; MyTim = new HardwareTimer(Instance); MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN); MyTim->attachInterrupt(TimerStep_CB); pinMode(STEPPER_DIR_PIN, OUTPUT); // Set starting count value EncoderInit.SetCount(Tim2, 0); attachInterrupt(digitalPinToInterrupt(INDEX_PIN), indexPulse, RISING); // When Index triggered // EncoderInit.SetCount(Tim3, 0); // EncoderInit.SetCount(Tim4, 0); // EncoderInit.SetCount(Tim8, 0); ecat_slv_init(&config); } void loop(void) { ESCvar.PrevTime = ESCvar.Time; if (serveIRQ) { DIG_process(DIG_PROCESS_WD_FLAG | DIG_PROCESS_OUTPUTS_FLAG | DIG_PROCESS_APP_HOOK_FLAG | DIG_PROCESS_INPUTS_FLAG); serveIRQ = 0; } ecat_slv_poll(); } void indexPulse(void) { if (pleaseZeroTheCounter) { TIM2->CNT = 0; indexPulseFired = 1; Pos.clear(); TDelta.clear(); pleaseZeroTheCounter = 0; } } void sync0Handler(void) { serveIRQ = 1; } volatile uint8_t timerIsRunning = 0; volatile uint8_t reloadStepperTimer = 0; volatile int32_t currentPosition = 0; volatile int32_t direction = 1; volatile int32_t timerStepPosition = 0; volatile int32_t timerStepDirection = 0; volatile int32_t timerStepPositionAtEnd = 0; void handleStepper(void) { int32_t pulsesAtEndOfCycle = 100 * requestedPosition; // From Turner.hal X:5000 Z:2000 ps/mm makePulses(/*sync0CycleTime / 1000*/ 1200, pulsesAtEndOfCycle); // Make the pulses using hardware timer actualPosition = requestedPosition; } volatile int32_t timerNewEndStepPosition = 0; volatile uint64_t timerNewEndTime = 0; void makePulses(uint64_t cycleTime /* in usecs */, int32_t pulsesAtEnd /* end position*/) { if (1 /*!timerIsRunning*/) { // Start the timer int32_t steps = pulsesAtEnd - timerStepPositionAtEnd; // Pulses to go + or - if (steps != 0) { if (abs(steps) * 1000000 / cycleTime > 100000) // 100 kHz is too much for driver, reduce { int32_t stepsMax = 100000 * cycleTime / 1000000; steps = stepsMax * (steps > 0 ? 1 : -1); pulsesAtEnd = timerStepPositionAtEnd + steps; } byte sgn = steps > 0 ? HIGH : LOW; digitalWrite(STEPPER_DIR_PIN, sgn); uint32_t freq = 1.4 * abs(steps) * 1000000 / cycleTime; MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN); MyTim->setOverflow(freq, HERTZ_FORMAT); MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 % timerStepDirection = steps > 0 ? 1 : -1; timerStepPositionAtEnd = pulsesAtEnd; // Current Position timerIsRunning = 1; MyTim->resume(); } } else // Timer is running, reload { // Set variables, they will be picked up by the timer_CB and the timer is reloaded. timerNewEndStepPosition = pulsesAtEnd; timerNewEndTime = micros() + cycleTime; } } void TimerStep_CB(void) { timerStepPosition += timerStepDirection; // The step that was just completed if (timerNewEndTime != 0) // Are we going to reload? { // Input for reload is timerNewEndStepPosition and timerNewEndTime // The timer has current position and current time and from this // can set new frequency and new endtarget for steps MyTim->pause(); int32_t steps = timerNewEndStepPosition - timerStepPosition; uint64_t cycleTime = timerNewEndTime - micros(); byte sgn = steps > 0 ? HIGH : LOW; digitalWrite(STEPPER_DIR_PIN, sgn); uint32_t freq = abs(steps) * 1000000 / cycleTime; MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN); MyTim->setOverflow(freq, HERTZ_FORMAT); MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 % timerStepDirection = steps > 0 ? 1 : -1; timerStepPositionAtEnd = timerNewEndStepPosition; timerNewEndStepPosition = 0; // Set to zero to not reload next time timerNewEndTime = 0; timerIsRunning = 1; MyTim->resume(); } if (timerStepPosition == timerStepPositionAtEnd) // Are we finished? { timerIsRunning = 0; MyTim->pause(); } } void ESC_interrupt_enable(uint32_t mask) { // Enable interrupt for SYNC0 or SM2 or SM3 uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3; if (mask & user_int_mask) { ESC_ALeventmaskwrite(ESC_ALeventmaskread() | (mask & user_int_mask)); attachInterrupt(digitalPinToInterrupt(PC3), sync0Handler, RISING); // Set LAN9252 interrupt pin driver as push-pull active high uint32_t bits = 0x00000111; ESC_write(0x54, &bits, 4); // Enable LAN9252 interrupt bits = 0x00000001; ESC_write(0x5c, &bits, 4); } } void ESC_interrupt_disable(uint32_t mask) { // Enable interrupt for SYNC0 or SM2 or SM3 uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3; if (mask & user_int_mask) { // Disable interrupt from SYNC0 ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(mask & user_int_mask)); detachInterrupt(digitalPinToInterrupt(PC3)); // Disable LAN9252 interrupt uint32_t bits = 0x00000000; ESC_write(0x5c, &bits, 4); } } extern "C" uint32_t ESC_SYNC0cycletime(void); // Setup of DC uint16_t dc_checker(void) { // Indicate we run DC ESCvar.dcsync = 0; sync0CycleTime = ESC_SYNC0cycletime(); return 0; } #define ONE_PERIOD 65536 #define HALF_PERIOD 32768 int64_t unwrap_encoder(uint16_t in, int64_t *prev) { int64_t c64 = (int32_t)in - HALF_PERIOD; // remove half period to determine (+/-) sign of the wrap int64_t dif = (c64 - *prev); // core concept: prev + (current - prev) = current // wrap difference from -HALF_PERIOD to HALF_PERIOD. modulo prevents differences after the wrap from having an incorrect result int64_t mod_dif = ((dif + HALF_PERIOD) % ONE_PERIOD) - HALF_PERIOD; if (dif < -HALF_PERIOD) mod_dif += ONE_PERIOD; // account for mod of negative number behavior in C int64_t unwrapped = *prev + mod_dif; *prev = unwrapped; // load previous value return unwrapped + HALF_PERIOD; // remove the shift we applied at the beginning, and return }