Split class into cpp and h file. Works at commands, but initial isn't ok

This commit is contained in:
Hakan Bastedt
2024-01-10 18:59:16 +01:00
parent c5a95074dc
commit f6abd73c58
2 changed files with 139 additions and 122 deletions

View File

@@ -17,129 +17,18 @@ public:
HardwareTimer *MyTim; HardwareTimer *MyTim;
const uint32_t stepsPerMM = 1000; const uint32_t stepsPerMM = 1000;
uint32_t sync0CycleTime; uint32_t sync0CycleTime;
uint8_t dirPin;
uint8_t stepPin;
uint8_t timerChan;
StepGen(TIM_TypeDef *Timer, uint8_t timerChannel, uint8_t stepPin, uint8_t dirPin, void irq(void)) StepGen(TIM_TypeDef *Timer, uint8_t timerChannel, uint8_t stepPin, uint8_t dirPin, void irq(void));
{ void cmdPos(double_t pos);
timerIsRunning = 0; double actPos();
timerStepPosition = 0; double reqPos();
timerStepDirection = 0; void handleStepper(void);
timerStepPositionAtEnd = 0; void setCycleTime(uint32_t cycleTime);
timerNewEndStepPosition = 0; void makePulses(uint64_t cycleTime /* in usecs */, int32_t pulsesAtEnd /* end position*/);
timerNewCycleTime = 0; void timerCB();
actualPosition = 0;
requestedPosition = 0;
MyTim = new HardwareTimer(Timer);
MyTim->setMode(timerChannel, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
MyTim->attachInterrupt(irq);
pinMode(dirPin, OUTPUT);
/*
TIM_TypeDef *Timer = TIM1;
MyTim = new HardwareTimer(Timer);
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
MyTim->attachInterrupt(TimerStep_CB);
pinMode(STEPPER_DIR_PIN, OUTPUT);
*/
}
void cmdPos(double_t pos)
{
requestedPosition = pos;
}
double actPos()
{
return actualPosition;
}
double reqPos()
{
return requestedPosition;
}
void handleStepper(void)
{
actualPosition = timerStepPosition / double(stepsPerMM);
double diffPosition = requestedPosition - actualPosition;
if (abs(diffPosition) * stepsPerMM > 10000)
{
requestedPosition = actualPosition + 10.0 * (diffPosition > 0 ? 1 : -1);
}
int32_t pulsesAtEndOfCycle = stepsPerMM * requestedPosition; // From Turner.hal X:5000 Z:2000 ps/mm
makePulses(sync0CycleTime, pulsesAtEndOfCycle); // Make the pulses using hardware timer
}
void setCycleTime(uint32_t cycleTime)
{
sync0CycleTime = cycleTime;
}
void makePulses(uint64_t cycleTime /* in usecs */, int32_t pulsesAtEnd /* end position*/)
{
uint32_t now = micros();
if (timerIsRunning)
{
// Set variables, they will be picked up by the timer_CB and the timer is reloaded.
timerNewEndStepPosition = pulsesAtEnd;
timerNewCycleTime = cycleTime;
}
if (!timerIsRunning)
{
// Start the timer
int32_t steps = pulsesAtEnd - timerStepPositionAtEnd; // Pulses to go + or -
if (steps != 0)
{
uint8_t sgn = steps > 0 ? HIGH : LOW;
digitalWrite(STEPPER_DIR_PIN, sgn);
double_t freqf = (abs(steps) * 1000000.0) / double(cycleTime);
uint32_t freq = uint32_t(freqf);
// freq=1428;
MyTim->setOverflow(freq, HERTZ_FORMAT);
MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 %
timerStepDirection = steps > 0 ? 1 : -1;
timerStepPositionAtEnd = pulsesAtEnd; // Current Position
timerIsRunning = 1;
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
MyTim->resume();
}
}
}
void timerCB()
{
timerStepPosition += timerStepDirection; // The step that was just completed
if (timerNewCycleTime != 0) // Are we going to reload?
{
// Input for reload is timerNewEndStepPosition and timerNewEndTime
// The timer has current position and current time and from this
// can set new frequency and new endtarget for steps
MyTim->pause();
int32_t steps = timerNewEndStepPosition - timerStepPosition;
if (steps != 0)
{
uint8_t sgn = steps > 0 ? HIGH : LOW;
digitalWrite(STEPPER_DIR_PIN, sgn);
double_t freqf = (abs(steps) * 1000000.0) / double(timerNewCycleTime);
uint32_t freq = uint32_t(freqf);
// freq=1428;
if (freq != 0)
{
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
// freq=1428;
MyTim->setOverflow(freq, HERTZ_FORMAT);
MyTim->setCaptureCompare(4, 50, PERCENT_COMPARE_FORMAT); // 50 %
timerStepDirection = steps > 0 ? 1 : -1;
timerStepPositionAtEnd = timerNewEndStepPosition;
timerNewEndStepPosition = 0; // Set to zero to not reload next time
timerNewCycleTime = 0;
MyTim->resume();
timerIsRunning = 1;
}
}
}
if (timerStepPosition == timerStepPositionAtEnd) // Are we finished?
{
timerIsRunning = 0;
MyTim->pause();
}
}
}; };
#endif #endif

View File

@@ -0,0 +1,128 @@
#include <Arduino.h>
#include <stdio.h>
#include "StepGen.h"
StepGen::StepGen(TIM_TypeDef *Timer, uint8_t _timerChannel, uint8_t _stepPin, uint8_t _dirPin, void irq(void))
{
timerIsRunning = 0;
timerStepPosition = 0;
timerStepDirection = 0;
timerStepPositionAtEnd = 0;
timerNewEndStepPosition = 0;
timerNewCycleTime = 0;
actualPosition = 0;
requestedPosition = 0;
dirPin = _dirPin;
stepPin = _stepPin;
timerChan = _timerChannel;
MyTim = new HardwareTimer(Timer);
MyTim->setMode(timerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
MyTim->attachInterrupt(irq);
pinMode(dirPin, OUTPUT);
/*
TIM_TypeDef *Timer = TIM1;
MyTim = new HardwareTimer(Timer);
MyTim->setMode(4, TIMER_OUTPUT_COMPARE_PWM2, STEPPER_STEP_PIN);
MyTim->attachInterrupt(TimerStep_CB);
pinMode(STEPPER_DIR_PIN, OUTPUT);
*/
}
void StepGen::cmdPos(double_t pos)
{
requestedPosition = pos;
}
double StepGen::actPos()
{
return actualPosition;
}
double StepGen::reqPos()
{
return requestedPosition;
}
void StepGen::handleStepper(void)
{
actualPosition = timerStepPosition / double(stepsPerMM);
double diffPosition = requestedPosition - actualPosition;
if (abs(diffPosition) * stepsPerMM > 10000)
{
requestedPosition = actualPosition + 10.0 * (diffPosition > 0 ? 1 : -1);
}
int32_t pulsesAtEndOfCycle = stepsPerMM * requestedPosition; // From Turner.hal X:5000 Z:2000 ps/mm
makePulses(sync0CycleTime, pulsesAtEndOfCycle); // Make the pulses using hardware timer
}
void StepGen::setCycleTime(uint32_t cycleTime)
{
sync0CycleTime = cycleTime;
}
void StepGen::makePulses(uint64_t cycleTime /* in usecs */, int32_t pulsesAtEnd /* end position*/)
{
uint32_t now = micros();
if (timerIsRunning)
{
// Set variables, they will be picked up by the timer_CB and the timer is reloaded.
timerNewEndStepPosition = pulsesAtEnd;
timerNewCycleTime = cycleTime;
}
if (!timerIsRunning)
{
// Start the timer
int32_t steps = pulsesAtEnd - timerStepPositionAtEnd; // Pulses to go + or -
if (steps != 0)
{
uint8_t sgn = steps > 0 ? HIGH : LOW;
digitalWrite(dirPin, sgn);
double_t freqf = (abs(steps) * 1000000.0) / double(cycleTime);
uint32_t freq = uint32_t(freqf);
// freq=1428;
MyTim->setOverflow(freq, HERTZ_FORMAT);
MyTim->setCaptureCompare(timerChan, 50, PERCENT_COMPARE_FORMAT); // 50 %
timerStepDirection = steps > 0 ? 1 : -1;
timerStepPositionAtEnd = pulsesAtEnd; // Current Position
timerIsRunning = 1;
MyTim->setMode(timerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
MyTim->resume();
}
}
}
void StepGen::timerCB()
{
timerStepPosition += timerStepDirection; // The step that was just completed
if (timerNewCycleTime != 0) // Are we going to reload?
{
// Input for reload is timerNewEndStepPosition and timerNewEndTime
// The timer has current position and current time and from this
// can set new frequency and new endtarget for steps
MyTim->pause();
int32_t steps = timerNewEndStepPosition - timerStepPosition;
if (steps != 0)
{
uint8_t sgn = steps > 0 ? HIGH : LOW;
digitalWrite(stepPin, sgn);
double_t freqf = (abs(steps) * 1000000.0) / double(timerNewCycleTime);
uint32_t freq = uint32_t(freqf);
// freq=1428;
if (freq != 0)
{
MyTim->setMode(timerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
// freq=1428;
MyTim->setOverflow(freq, HERTZ_FORMAT);
MyTim->setCaptureCompare(timerChan, 50, PERCENT_COMPARE_FORMAT); // 50 %
timerStepDirection = steps > 0 ? 1 : -1;
timerStepPositionAtEnd = timerNewEndStepPosition;
timerNewEndStepPosition = 0; // Set to zero to not reload next time
timerNewCycleTime = 0;
MyTim->resume();
timerIsRunning = 1;
}
}
}
if (timerStepPosition == timerStepPositionAtEnd) // Are we finished?
{
timerIsRunning = 0;
MyTim->pause();
}
}