a cycle's pwm train maight have been too long and run into the start of next cycle's pwm train. That's gone now and it seems to work.

A more brilliant solution is needed for this.
This commit is contained in:
Hakan Bastedt
2024-02-11 19:55:40 +01:00
parent c04ac0e74b
commit f4a15afa8a
4 changed files with 46 additions and 27 deletions

View File

@@ -1,6 +1,11 @@
#include <Arduino.h>
#include <stdio.h>
#include "StepGen2.h"
extern "C"
{
#include "esc.h"
}
extern int64_t extendTime(uint32_t);
StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void), TIM_TypeDef *Timer2, void irq2(void))
{
@@ -21,10 +26,10 @@ StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin,
startTimer = new HardwareTimer(Timer2);
startTimer->attachInterrupt(irq2);
}
uint32_t cnt = 0;
uint32_t StepGen2::handleStepper(void)
extern volatile uint32_t cnt;
uint32_t StepGen2::handleStepper(uint64_t irqTime)
{
digitalWrite(dirPin, cnt++ % 2);
if (!enabled)
return updatePos(0);
@@ -32,39 +37,44 @@ uint32_t StepGen2::handleStepper(void)
commandedStepPosition = floor(commandedPosition * stepsPerMM); // Scale position to steps
if (initialStepPosition == commandedStepPosition) // No movement
return 1;
// digitalWrite(dirPin, cnt++ % 2);
float approximateFrequency = fabs(initialStepPosition - commandedStepPosition) // We must take at least one step
/ lcncCycleTime; // from here on
// if (approximateFrequency > maxAllowedFrequency) // Stay on this position
// return 1;
// if (approximateFrequency > maxAllowedFrequency) // Stay on this position
// return 1;
float kTRAJ = (commandedPosition - initialPosition) / lcncCycleTime; // Straight line equation
float mTRAJ = initialPosition; // position = kTRAJ x time + mTRAJ
// Operating on incoming positions (not steps)
if (fabs(kTRAJ * lcncCycleTime * stepsPerMM) < 0.01) // Very flat slope
// if (fabs(kTRAJ * lcncCycleTime * stepsPerMM) < 0.01) // Very flat slope
nSteps = commandedStepPosition - initialStepPosition; //
if (abs(nSteps) <= 8) // Some small number
{ //
Tstartf = 0.5 * lcncCycleTime; // Just take a step in the middle of the cycle
frequency = 10000; // At some suitable frequency
nSteps = kTRAJ > 0 ? 1 : -1; // Take only one step
Tstartf = 0; // Just take a step in the middle of the cycle
frequency = 1000 * (abs(nSteps) + 1); // At some suitable frequency
}
else // Regular step train, up or down
{
if (kTRAJ > 0)
Tstartf = (ceil(initialPosition * stepsPerMM) / stepsPerMM - mTRAJ) / kTRAJ;
Tstartf = (float(initialStepPosition + 1) / float(stepsPerMM) - mTRAJ) / kTRAJ;
else
Tstartf = (floor(initialPosition * stepsPerMM) / stepsPerMM - mTRAJ) / kTRAJ;
Tstartf = (float(initialStepPosition) / float(stepsPerMM) - mTRAJ) / kTRAJ;
frequency = fabs(kTRAJ * stepsPerMM);
nSteps = commandedStepPosition - initialStepPosition; // sign(nSteps) = direction.
}
updatePos(5);
Tstartu = Tstartf * 1e6; // Was secs, now usecs
uint64_t nowTime = extendTime(micros()); // usecs
dbg = nowTime - irqTime;
Tstartu = Tjitter + Tstartf * 1e6 // Was secs, now usecs
- (nowTime - irqTime); // Have already wasted some time since the irq.
startTimer->setOverflow(Tstartu + Tjitter, MICROSEC_FORMAT); // All handled by irqs
startTimer->setOverflow(Tstartu, MICROSEC_FORMAT); // All handled by irqs
startTimer->resume();
return 1;
}
void StepGen2::startTimerCB()
{
digitalWrite(dirPin, cnt++ % 2);
startTimer->pause(); // Once is enough.
// digitalWrite(dirPin, nSteps > 0 ? 1 : -1);
timerPulseSteps = abs(nSteps);
@@ -77,7 +87,10 @@ void StepGen2::pulseTimerCB()
{
--timerPulseSteps;
if (timerPulseSteps == 0)
{
pulseTimer->pause();
digitalWrite(dirPin, cnt++ % 2);
}
}
uint32_t StepGen2::updatePos(uint32_t i)