logic might be there
This commit is contained in:
3
Firmware/.vscode/settings.json
vendored
3
Firmware/.vscode/settings.json
vendored
@@ -10,7 +10,8 @@
|
||||
"vector": "cpp",
|
||||
"system_error": "cpp",
|
||||
"numeric": "cpp",
|
||||
"ostream": "cpp"
|
||||
"ostream": "cpp",
|
||||
"cmath": "cpp"
|
||||
},
|
||||
"C_Cpp.errorSquiggles": "disabled",
|
||||
"cmake.configureOnOpen": false
|
||||
|
||||
53
Firmware/include/StepGen2.h
Executable file
53
Firmware/include/StepGen2.h
Executable file
@@ -0,0 +1,53 @@
|
||||
|
||||
#ifndef STEPGEN
|
||||
#define STEPGEN
|
||||
#include <HardwareTimer.h>
|
||||
|
||||
class StepGen2
|
||||
{
|
||||
private:
|
||||
volatile uint8_t timerIsRunning;
|
||||
volatile int32_t timerStepPosition;
|
||||
volatile int32_t timerStepDirection;
|
||||
volatile int32_t timerStepPositionAtEnd;
|
||||
volatile int32_t timerNewEndStepPosition;
|
||||
volatile uint32_t timerNewCycleTime;
|
||||
volatile double_t actualPosition;
|
||||
volatile double_t requestedPosition;
|
||||
volatile double_t oldPosition;
|
||||
volatile int32_t oldStepPosition;
|
||||
volatile uint8_t enabled;
|
||||
HardwareTimer *MyTim;
|
||||
int16_t stepsPerMM;
|
||||
uint8_t dirPin;
|
||||
PinName stepPin;
|
||||
uint32_t timerChan;
|
||||
const uint32_t maxFreq = 100000;
|
||||
volatile uint32_t prevFreq1 = 0;
|
||||
volatile uint32_t prevFreq2 = 0;
|
||||
|
||||
uint32_t err = 0;
|
||||
|
||||
public:
|
||||
static uint32_t sync0CycleTime;
|
||||
volatile uint32_t lcncCycleTime; // Linuxcnc nominal cycle time (1 ms often)
|
||||
|
||||
StepGen2(TIM_TypeDef *Timer, uint32_t timerChannel, PinName stepPin, uint8_t dirPin, void irq(void));
|
||||
|
||||
void handleStepper(void);
|
||||
void timerCB();
|
||||
void enable(uint8_t yes);
|
||||
|
||||
void reqPos(double_t pos) { requestedPosition = pos; };
|
||||
double reqPos() { return requestedPosition; };
|
||||
void oldPos(double_t pos) { oldPosition = pos; };
|
||||
double oldPos() { return oldPosition; };
|
||||
void oldStepPos(int32_t pos) { oldStepPosition = pos; }
|
||||
int32_t oldStepPos() { return oldStepPosition; }
|
||||
void actPos(double_t pos) { actualPosition = pos; };
|
||||
double actPos() { return actualPosition; };
|
||||
void setScale(int16_t spm) { stepsPerMM = spm; }
|
||||
int16_t getScale() { return stepsPerMM; }
|
||||
};
|
||||
|
||||
#endif
|
||||
114
Firmware/src/StepGen2.cpp
Executable file
114
Firmware/src/StepGen2.cpp
Executable file
@@ -0,0 +1,114 @@
|
||||
#include <Arduino.h>
|
||||
#include <stdio.h>
|
||||
#include "StepGen2.h"
|
||||
|
||||
StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void))
|
||||
{
|
||||
timerIsRunning = 0;
|
||||
timerStepPosition = 0;
|
||||
timerStepDirection = 0;
|
||||
timerStepPositionAtEnd = 0;
|
||||
timerNewEndStepPosition = 0;
|
||||
actualPosition = 0;
|
||||
requestedPosition = 0;
|
||||
oldPosition = 0;
|
||||
oldStepPosition = 0;
|
||||
stepsPerMM = 0;
|
||||
enabled = 0;
|
||||
|
||||
dirPin = _dirPin;
|
||||
stepPin = _stepPin;
|
||||
timerChan = _timerChannel;
|
||||
MyTim = new HardwareTimer(Timer);
|
||||
MyTim->attachInterrupt(irq);
|
||||
pinMode(dirPin, OUTPUT);
|
||||
}
|
||||
|
||||
void StepGen2::handleStepper(void)
|
||||
{
|
||||
if (!enabled)
|
||||
return;
|
||||
lcncCycleTime = StepGen2::sync0CycleTime;
|
||||
|
||||
float y0TRAJ = oldPos() * getScale(); // Straight line equation between old and new point
|
||||
float y1TRAJ = reqPos() * getScale(); // Time runs between 0 and lcncCycleTime (1 ms)
|
||||
float kTRAJ = (y1TRAJ - y0TRAJ) / lcncCycleTime; // Slope
|
||||
float mTRAJ = y1TRAJ - kTRAJ * lcncCycleTime; // Intercept
|
||||
int32_t stepPosStart = floor(y0TRAJ); // First step position, integer value of first point position
|
||||
int32_t stepPosStop = floor(y1TRAJ); // End step position
|
||||
|
||||
float Tstart = (stepPosStart - mTRAJ) / kTRAJ; // First step at this time
|
||||
float Tstop = (stepPosStop - mTRAJ) / kTRAJ; // And the last step
|
||||
float Tstep = fabs(1.0 / kTRAJ); // Time between steps
|
||||
float stepFrequency = fabs(kTRAJ); // 1/Tstep - which is kTRAJ
|
||||
//
|
||||
oldPos(reqPos()); // Save the numeric position for next step
|
||||
oldStepPos(stepPosStop); // also the step we are at
|
||||
//
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return; //
|
||||
if (/* 1.0 / Tstep */ kTRAJ > 200000) //
|
||||
{ // Too high frequency, deal with this later.
|
||||
err = 1; //
|
||||
return; //
|
||||
} //
|
||||
int8_t dir = stepPosStart > stepPosStop ? -1 : 1; // Which direction to step in
|
||||
//
|
||||
switch (abs(stepPosStart - oldStepPos())) //
|
||||
{ //
|
||||
case 0: // StepPosStart and oldStepPos() are often the same, but don't redo the step
|
||||
stepPosStart += dir; // New first step
|
||||
Tstart += Tstep; //
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return; //
|
||||
break; //
|
||||
case 1: //
|
||||
// Let it slide through and deal with it after the case switch
|
||||
break; //
|
||||
default: //
|
||||
err = 2; //
|
||||
return; //
|
||||
break; //
|
||||
} //
|
||||
// Now the old point and the start point should be separate.
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return; //
|
||||
// Tstart, Tstep and Tstop defines the coming pwm-sequence.
|
||||
// Always do one pulse at Tstart when we come here. Next Tstart+Tstep and so on until Tstop.
|
||||
}
|
||||
void StepGen2::timerCB()
|
||||
{
|
||||
#if 0
|
||||
timerStepPosition += timerStepDirection; // The step that was just completed
|
||||
if (timerNewEndStepPosition != 0) // Are we going to reload?
|
||||
{
|
||||
// Input for reload is timerNewEndStepPosition
|
||||
// The timer has current position and from this
|
||||
// can set new frequency and new endtarget for steps
|
||||
MyTim->pause(); // We are not at stop, let's stop it. Note stepPin is floating
|
||||
int32_t steps = timerNewEndStepPosition - timerStepPosition;
|
||||
if (steps != 0)
|
||||
{
|
||||
uint8_t sgn = steps > 0 ? HIGH : LOW;
|
||||
digitalWrite(dirPin, sgn);
|
||||
float_t freqf = abs(steps) / float(pwmCycleTime * 1.0e-6);
|
||||
uint32_t freq = uint32_t(freqf);
|
||||
timerStepDirection = steps > 0 ? 1 : -1;
|
||||
timerStepPositionAtEnd = timerNewEndStepPosition;
|
||||
timerNewEndStepPosition = 0; // Set to zero to not reload next time
|
||||
MyTim->setMode(timerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
|
||||
MyTim->setOverflow(freq, HERTZ_FORMAT);
|
||||
MyTim->setCaptureCompare(timerChan, 50, PERCENT_COMPARE_FORMAT); // 50 %
|
||||
MyTim->resume();
|
||||
timerIsRunning = 1;
|
||||
}
|
||||
}
|
||||
if (timerStepPosition == timerStepPositionAtEnd) // Are we finished?
|
||||
{
|
||||
timerIsRunning = 0;
|
||||
MyTim->pause();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
uint32_t StepGen2::sync0CycleTime = 0;
|
||||
@@ -17,23 +17,22 @@ void indexPulseEncoderCB1(void)
|
||||
{
|
||||
Encoder1.indexPulse();
|
||||
}
|
||||
|
||||
#if 0
|
||||
#include "StepGen.h"
|
||||
|
||||
void timerCallbackStep1(void);
|
||||
StepGen Step1(TIM1, 4, PA_11, PA12, timerCallbackStep1);
|
||||
void timerCallbackStep1(void)
|
||||
{
|
||||
Step1.timerCB();
|
||||
}
|
||||
|
||||
void timerCallbackStep2(void);
|
||||
StepGen Step2(TIM3, 4, PC_9, PC10, timerCallbackStep2);
|
||||
void timerCallbackStep2(void)
|
||||
{
|
||||
Step2.timerCB();
|
||||
}
|
||||
|
||||
#endif
|
||||
#include "StepGen2.h"
|
||||
CircularBuffer<uint32_t, 200> Tim;
|
||||
volatile uint64_t nowTime = 0, thenTime = 0;
|
||||
|
||||
@@ -41,19 +40,22 @@ void cb_set_outputs(void) // Master outputs gets here, slave inputs, first opera
|
||||
{
|
||||
Encoder1.setLatch(Obj.IndexLatchEnable);
|
||||
Encoder1.setScale(Obj.EncPosScale);
|
||||
|
||||
#if 0
|
||||
Step1.reqPos(Obj.StepGenIn1.CommandedPosition);
|
||||
Step1.setScale(Obj.StepGenIn1.StepsPerMM);
|
||||
Step1.enable(Obj.Enable1);
|
||||
Step2.reqPos(Obj.StepGenIn2.CommandedPosition);
|
||||
Step2.setScale(Obj.StepGenIn2.StepsPerMM);
|
||||
Step2.enable(Obj.Enable1);
|
||||
#endif
|
||||
}
|
||||
|
||||
void handleStepper(void)
|
||||
{
|
||||
#if 0
|
||||
Step1.handleStepper();
|
||||
Step2.handleStepper();
|
||||
#endif
|
||||
}
|
||||
|
||||
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
|
||||
@@ -62,10 +64,10 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
|
||||
Obj.EncPos = Encoder1.currentPos();
|
||||
Obj.EncFrequency = Encoder1.frequency(ESCvar.Time);
|
||||
Obj.IndexByte = Encoder1.getIndexState();
|
||||
|
||||
#if 0
|
||||
Obj.StepGenOut1.ActualPosition = Step1.actPos();
|
||||
Obj.StepGenOut2.ActualPosition = Step2.actPos();
|
||||
|
||||
#endif
|
||||
uint32_t dTim = nowTime - thenTime; // Debug. Getting jitter over the last 200 milliseconds
|
||||
Tim.push(dTim);
|
||||
uint32_t max_Tim = 0, min_Tim = UINT32_MAX;
|
||||
@@ -179,6 +181,9 @@ uint16_t dc_checker(void)
|
||||
{
|
||||
// Indicate we run DC
|
||||
ESCvar.dcsync = 1;
|
||||
StepGen::sync0CycleTime = ESC_SYNC0cycletime() / 1000; // usecs
|
||||
#if 0
|
||||
StepGen::sync0CycleTime = ESC_SYNC0cycletime() / 1000; // usecs
|
||||
#endif
|
||||
StepGen2::sync0CycleTime = ESC_SYNC0cycletime() / 1000; // usecs
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user