Indentation

This commit is contained in:
Hakan Bastedt
2025-10-21 21:53:51 +02:00
parent cd78577e4d
commit cf4bece469

View File

@@ -1,8 +1,7 @@
// EaserCAT 3000
#include <Arduino.h>
#include <stdio.h>
extern "C"
{
extern "C" {
#include "ecat_slv.h"
#include "utypes.h"
};
@@ -47,16 +46,17 @@ void basePeriodCB(void);
volatile uint16_t encCnt = 0;
void indexPulseEncoderCB1(void);
MyEncoder Encoder1(TIM2, PA3, indexPulseEncoderCB1);
void indexPulseEncoderCB1(void)
{
void indexPulseEncoderCB1(void) {
encCnt++;
Encoder1.indexPulse();
}
///////// Frequency counter for Torch height
#include "HardwareTimer.h"
// NOTE This mod in the beginning (line 33) of HardwareTimer.cpp for 32-bit precision
////// //#define MAX_RELOAD ((1 << 16) - 1) // Currently even 32b timers are used as 16b to have generic behavior
// NOTE This mod in the beginning (line 33) of HardwareTimer.cpp for 32-bit
// precision
////// //#define MAX_RELOAD ((1 << 16) - 1) // Currently even 32b timers are
///used as 16b to have generic behavior
////// #define MAX_RELOAD 0xFFFFFFFF
////// HardwareTimer.cpp is part of the Stm32duino code <add where to find that>
@@ -73,7 +73,8 @@ const byte SYNC0 = PC3;
const byte SYNC1 = PC1;
const byte SINT = PC0;
volatile uint16_t ALEventIRQ; // ALEvent that caused the interrupt
volatile byte serveIRQ = 0; // Flag indicating we got a SYNCx pulse and should act on that
volatile byte serveIRQ =
0; // Flag indicating we got a SYNCx pulse and should act on that
volatile uint32_t globalIRQ = 0; // Testing
extern "C" uint32_t ESC_SYNC0cycletime(void); // A SOES function we need
void globalInt(void); // ISR for INT line
@@ -110,8 +111,7 @@ void cb_set_outputs(void) // Get Master outputs, slave inputs, first operation
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
{
float scale = 1;
if (Obj.EncoderOut.Scale != 0.0)
scale = Obj.EncoderOut.Scale;
if (Obj.EncoderOut.Scale != 0.0) scale = Obj.EncoderOut.Scale;
for (int i = 0; i < 8; i++)
if (digitalRead(INPUTS[i]) == HIGH)
@@ -122,7 +122,8 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
Obj.EncoderIn.IndexStatus = Encoder1.indexHappened();
Obj.EncoderIn.Position = Encoder1.currentPos();
Obj.EncoderIn.IndexByte = Encoder1.getIndexState();
Obj.EncoderIn.Velocity = Obj.EncoderOut.Scale * Encoder1.frequency(longTime.extendTime(micros()));
Obj.EncoderIn.Velocity =
Obj.EncoderOut.Scale * Encoder1.frequency(longTime.extendTime(micros()));
Obj.ActualPosition1 = Step->stepgen_array[0].pos_fb;
Obj.ActualPosition2 = Step->stepgen_array[1].pos_fb;
@@ -130,12 +131,16 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
Obj.ActualPosition4 = Step->stepgen_array[3].pos_fb;
}
void handleStepper(void) // Called every cycle, updates stepper generator with new positions,
void handleStepper(
void) // Called every cycle, updates stepper generator with new positions,
// restarts stepper generator and reads out current posution
{
static int warned = 0;
if (!warned && sync0CycleTime == 0) // This is kludge to be used during testing to activate stepper during free run
// Stepper generators normally run only during synchronized conditions. But to do testing.
if (!warned &&
sync0CycleTime ==
0) // This is kludge to be used during testing to activate stepper
// during free run Stepper generators normally run only during
// synchronized conditions. But to do testing.
{
sync0CycleTime = 1000000; // 1e6 ns = 1e3 us = 1ms
Serial1.println("Warn sync0Cycletime");
@@ -149,8 +154,7 @@ void ESC_interrupt_disable(uint32_t mask);
uint16_t dc_checker(void);
void sync0Handler(void);
static esc_cfg_t config =
{
static esc_cfg_t config = {
.user_arg = NULL,
.use_interrupt = 0,
.watchdog_cnt = 150,
@@ -169,18 +173,15 @@ static esc_cfg_t config =
.esc_check_dc_handler = dc_checker,
};
void setup(void)
{
void setup(void) {
Serial1.begin(115200);
delay(1000); // To make terminal window ready
for (int i = 0; i < 4; i++)
{
for (int i = 0; i < 4; i++) {
pinMode(OUTPUTS[i], OUTPUT);
digitalWrite(OUTPUTS[i], LOW);
}
for (int i = 0; i < 8; i++)
pinMode(INPUTS[i], INPUT);
for (int i = 0; i < 8; i++) pinMode(INPUTS[i], INPUT);
pinMode(DAC1_pin, OUTPUT);
analogWrite(DAC1_pin, 0);
@@ -194,23 +195,26 @@ void setup(void)
pinMode(PE5, OUTPUT); // Step 4
pinMode(PE4, OUTPUT); // Dir 4
basePeriod = newBasePeriod = BASE_PERIOD; // Random-ish number, but it should work. Change through sdos
basePeriod = newBasePeriod = BASE_PERIOD; // Random-ish number, but it should
// work. Change through sdos
baseTimer = new HardwareTimer(TIM11); // The base period timer
baseTimer->setOverflow(BASE_PERIOD / 1000, MICROSEC_FORMAT); // Or the line above, This one is uncalibrated
baseTimer->setOverflow(
BASE_PERIOD / 1000,
MICROSEC_FORMAT); // Or the line above, This one is uncalibrated
baseTimer->attachInterrupt(basePeriodCB);
encoder_config(); // Needed by encoder, possibly breaks some timers.
ecat_slv_init(&config);
attachInterrupt(digitalPinToInterrupt(PC0), globalInt, RISING); // For testing, should go into Enable_interrupt later on
attachInterrupt(
digitalPinToInterrupt(PC0), globalInt,
RISING); // For testing, should go into Enable_interrupt later on
}
void loop(void)
{
void loop(void) {
uint64_t dTime;
if (serveIRQ)
{
if (serveIRQ) {
DIG_process(DIG_PROCESS_WD_FLAG | DIG_PROCESS_OUTPUTS_FLAG |
DIG_PROCESS_APP_HOOK_FLAG | DIG_PROCESS_INPUTS_FLAG);
serveIRQ = 0;
@@ -218,12 +222,12 @@ void loop(void)
ecat_slv_poll();
}
dTime = longTime.extendTime(micros()) - irqTime;
if (dTime > 5000) // Don't run ecat_slv_poll when expecting to serve interrupt
if (dTime >
5000) // Don't run ecat_slv_poll when expecting to serve interrupt
ecat_slv();
}
void sync0Handler(void)
{
void sync0Handler(void) {
ALEventIRQ = ESC_ALeventread();
// if (ALEventIRQ & ESCREG_ALEVENT_SM2)
{
@@ -233,14 +237,14 @@ void sync0Handler(void)
}
// Enable SM2 interrupts
void ESC_interrupt_enable(uint32_t mask)
{
void ESC_interrupt_enable(uint32_t mask) {
// Enable interrupt for SYNC0 or SM2 or SM3
uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
if (mask & user_int_mask)
{
uint32_t user_int_mask =
ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
if (mask & user_int_mask) {
ESC_ALeventmaskwrite(ESC_ALeventmaskread() | (mask & user_int_mask));
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM3));
ESC_ALeventmaskwrite(ESC_ALeventmaskread() &
~(ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM3));
attachInterrupt(digitalPinToInterrupt(SYNC0), sync0Handler, RISING);
// Set LAN9252 interrupt pin driver as push-pull active high
@@ -254,13 +258,12 @@ void ESC_interrupt_enable(uint32_t mask)
}
// Disable SM2 interrupts
void ESC_interrupt_disable(uint32_t mask)
{
void ESC_interrupt_disable(uint32_t mask) {
// Enable interrupt for SYNC0 or SM2 or SM3
uint32_t user_int_mask = ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
uint32_t user_int_mask =
ESCREG_ALEVENT_DC_SYNC0 | ESCREG_ALEVENT_SM2 | ESCREG_ALEVENT_SM3;
if (mask & user_int_mask)
{
if (mask & user_int_mask) {
// Disable interrupt from SYNC0 etc
ESC_ALeventmaskwrite(ESC_ALeventmaskread() & ~(mask & user_int_mask));
detachInterrupt(digitalPinToInterrupt(SYNC0));
@@ -271,8 +274,7 @@ void ESC_interrupt_disable(uint32_t mask)
}
// Setup of DC
uint16_t dc_checker(void)
{
uint16_t dc_checker(void) {
// Indicate we run DC
ESCvar.dcsync = 1;
sync0CycleTime = ESC_SYNC0cycletime(); // nanosecs
@@ -280,56 +282,48 @@ uint16_t dc_checker(void)
}
// Test/debug routine for the INT line
void globalInt(void)
{
globalIRQ++;
}
void globalInt(void) { globalIRQ++; }
////// Frequency counter (torch height) callback routines
void InputCapture_IT_callback(void)
{
void InputCapture_IT_callback(void) {
CurrentCapture = FrequencyTimer->getCaptureCompare(channel);
/* frequency computation */
if (CurrentCapture > LastCapture)
{
if (CurrentCapture > LastCapture) {
FrequencyMeasured = input_freq / (CurrentCapture - LastCapture);
}
else if (CurrentCapture <= LastCapture)
{
} else if (CurrentCapture <= LastCapture) {
/* 0xFFFFFFFF is max overflow value */
FrequencyMeasured = input_freq / (0xFFFFFFFF + CurrentCapture - LastCapture);
FrequencyMeasured =
input_freq / (0xFFFFFFFF + CurrentCapture - LastCapture);
}
LastCapture = CurrentCapture;
rolloverCompareCount = 0;
}
/* In case of timer rollover, frequency is to low to be measured set value to 0
To reduce minimum frequency, it is possible to increase prescaler. But this is at a cost of precision. */
void Rollover_IT_callback(void)
{
To reduce minimum frequency, it is possible to increase prescaler. But this
is at a cost of precision. */
void Rollover_IT_callback(void) {
rolloverCompareCount++;
if (rolloverCompareCount > 1)
{
if (rolloverCompareCount > 1) {
FrequencyMeasured = 0;
}
}
///// Stepper generator callback routines
void updateStepperGenerators(void)
{
void updateStepperGenerators(void) {
baseTimer->pause();
Step->updateStepGen(posCmd1, posCmd2, posCmd3, posCmd4,
posScale1, posScale2, posScale3, posScale4,
maxAcc1, maxAcc2, maxAcc3, maxAcc4,
Step->updateStepGen(posCmd1, posCmd2, posCmd3, posCmd4, posScale1, posScale2,
posScale3, posScale4, maxAcc1, maxAcc2, maxAcc3, maxAcc4,
enable1, enable2, enable3, enable4,
sync0CycleTime); // Update positions
Step->makeAllPulses(); // Make first step right here
if (newBasePeriod != basePeriod) // Changed via sdos
{
basePeriod = newBasePeriod;
baseTimer->setOverflow(basePeriod / 1000, MICROSEC_FORMAT); // update timer frequency
baseTimer->setOverflow(basePeriod / 1000,
MICROSEC_FORMAT); // update timer frequency
}
basePeriodCnt = sync0CycleTime / basePeriod; //
baseTimer->refresh(); //
@@ -337,8 +331,7 @@ void updateStepperGenerators(void)
// Make the other steps in baseTimer's ISR
}
void basePeriodCB(void)
{
void basePeriodCB(void) {
if (--basePeriodCnt > 0) // Stop
Step->makeAllPulses(); // Make steps and pulses here
else