|
|
|
|
@@ -10,7 +10,7 @@ _Objects Obj;
|
|
|
|
|
HardwareSerial Serial1(PA10, PA9);
|
|
|
|
|
|
|
|
|
|
volatile uint16_t ALEventIRQ; // ALEvent that caused the interrupt
|
|
|
|
|
HardwareTimer *myTim; // The base period timer
|
|
|
|
|
HardwareTimer *baseTimer; // The base period timer
|
|
|
|
|
HardwareTimer *syncTimer; // The timer that syncs "with linuxcnc cycle"
|
|
|
|
|
|
|
|
|
|
#include "MyEncoder.h"
|
|
|
|
|
@@ -27,9 +27,10 @@ StepGen3 *Step = 0;
|
|
|
|
|
#include "extend32to64.h"
|
|
|
|
|
|
|
|
|
|
CircularBuffer<uint64_t, 200> Tim;
|
|
|
|
|
volatile uint64_t irqTime = 0, thenTime = 0, nowTime = 0;
|
|
|
|
|
volatile uint64_t irqTime = 0, thenTime = 0, nowTime = 0, irqCnt = 0, prevSyncTime = 0, syncTime = 0, deltaSyncTime;
|
|
|
|
|
extend32to64 longTime;
|
|
|
|
|
volatile uint16_t isrTime = 0, isr2Time = 0;
|
|
|
|
|
void setFrequencyAdjustedMicrosSeconds(HardwareTimer *timer, uint32_t usecs);
|
|
|
|
|
|
|
|
|
|
void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation
|
|
|
|
|
{
|
|
|
|
|
@@ -41,14 +42,39 @@ void cb_set_outputs(void) // Master outputs gets here, slave inputs, first opera
|
|
|
|
|
// Step2.enable(1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
volatile uint16_t basePeriodCnt;
|
|
|
|
|
volatile uint64_t makePulsesCnt = 0, prevMakePulsesCnt = 0;
|
|
|
|
|
volatile uint16_t deltaMakePulsesCnt;
|
|
|
|
|
|
|
|
|
|
volatile double pos_cmd1, pos_cmd2;
|
|
|
|
|
volatile uint64_t syncTime = 0, oldSyncTime = 0;
|
|
|
|
|
void syncWithLCNC()
|
|
|
|
|
{
|
|
|
|
|
if (Step)
|
|
|
|
|
Step->updateStepGen(pos_cmd1, pos_cmd2);
|
|
|
|
|
syncTimer->pause();
|
|
|
|
|
prevSyncTime = syncTime;
|
|
|
|
|
syncTime = longTime.extendTime(micros());
|
|
|
|
|
deltaSyncTime = syncTime - prevSyncTime;
|
|
|
|
|
deltaMakePulsesCnt = makePulsesCnt - prevMakePulsesCnt;
|
|
|
|
|
prevMakePulsesCnt = makePulsesCnt;
|
|
|
|
|
Step->updateStepGen(pos_cmd1, pos_cmd2); // Update positions
|
|
|
|
|
Step->makeAllPulses(); // Make first step right here
|
|
|
|
|
basePeriodCnt = 1000000 / BASE_PERIOD; //
|
|
|
|
|
baseTimer->setCount(0);
|
|
|
|
|
baseTimer->refresh(); //
|
|
|
|
|
baseTimer->resume(); // Make the other steps in ISR
|
|
|
|
|
// baseTimer->isRunning();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void basePeriodCB(void)
|
|
|
|
|
{
|
|
|
|
|
uint32_t one = micros();
|
|
|
|
|
|
|
|
|
|
Step->makeAllPulses();
|
|
|
|
|
|
|
|
|
|
isrTime = micros() - one;
|
|
|
|
|
if (--basePeriodCnt <= 0) // Stop
|
|
|
|
|
{
|
|
|
|
|
baseTimer->pause();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint16_t nLoops;
|
|
|
|
|
@@ -69,31 +95,28 @@ void handleStepper(void)
|
|
|
|
|
Obj.ActualPosition1 = Obj.CommandedPosition1;
|
|
|
|
|
Obj.ActualPosition2 = Obj.CommandedPosition2;
|
|
|
|
|
|
|
|
|
|
if (Step)
|
|
|
|
|
{
|
|
|
|
|
Step->stepgen_array[0].pos_scale = -Obj.StepsPerMM1;
|
|
|
|
|
Step->stepgen_array[1].pos_scale = -Obj.StepsPerMM2;
|
|
|
|
|
|
|
|
|
|
Obj.ActualPosition1 = Step->stepgen_array[0].pos_fb;
|
|
|
|
|
Obj.ActualPosition2 = Step->stepgen_array[1].pos_fb;
|
|
|
|
|
}
|
|
|
|
|
#if 0
|
|
|
|
|
uint32_t diffT = longTime.extendTime(micros()) - irqTime;
|
|
|
|
|
delayT = 700 - diffT;
|
|
|
|
|
delayT = 500 - diffT;
|
|
|
|
|
if (delayT > 0 && delayT < 900)
|
|
|
|
|
{
|
|
|
|
|
syncTimer->setOverflow(delayT, MICROSEC_FORMAT);
|
|
|
|
|
setFrequencyAdjustedMicrosSeconds(syncTimer, delayT);
|
|
|
|
|
syncTimer->refresh();
|
|
|
|
|
syncTimer->resume();
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
syncWithLCNC();
|
|
|
|
|
}
|
|
|
|
|
isr2Time = micros() - t;
|
|
|
|
|
}
|
|
|
|
|
uint16_t oldCnt = 0;
|
|
|
|
|
uint64_t startTime = 0;
|
|
|
|
|
uint16_t avgTime = 0;
|
|
|
|
|
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
|
|
|
|
|
{
|
|
|
|
|
// Obj.IndexStatus = Encoder1.indexHappened();
|
|
|
|
|
@@ -101,7 +124,7 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
|
|
|
|
|
// Obj.EncFrequency = Encoder1.frequency(ESCvar.Time);
|
|
|
|
|
// Obj.IndexByte = Encoder1.getIndexState();
|
|
|
|
|
float_t ap2 = Obj.ActualPosition2;
|
|
|
|
|
#if 1
|
|
|
|
|
#if 0
|
|
|
|
|
uint64_t dTim = irqTime - thenTime; // Debug. Getting jitter over the last 200 milliseconds
|
|
|
|
|
Tim.push(dTim);
|
|
|
|
|
uint64_t max_Tim = 0, min_Tim = UINT64_MAX;
|
|
|
|
|
@@ -115,14 +138,19 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
|
|
|
|
|
}
|
|
|
|
|
thenTime = irqTime;
|
|
|
|
|
#endif
|
|
|
|
|
if (irqCnt == 1000)
|
|
|
|
|
startTime = irqTime;
|
|
|
|
|
if (irqCnt == 11000)
|
|
|
|
|
avgTime = (irqTime - startTime) / 1000;
|
|
|
|
|
|
|
|
|
|
Obj.DiffT = longTime.extendTime(micros()) - irqTime; // max_Tim - min_Tim; // Debug
|
|
|
|
|
Obj.D1 = nLoops;
|
|
|
|
|
uint16_t newCnt = isrTime;
|
|
|
|
|
// Obj.D1 = newCnt - oldCnt;
|
|
|
|
|
oldCnt = newCnt;
|
|
|
|
|
Obj.D2 = isrTime; // Step->stepgen_array[1].freq;
|
|
|
|
|
Obj.D3 = isr2Time;//100 * Obj.CommandedPosition2; // abs(1000 * (ap2 - Obj.CommandedPosition2)); // Step2.actPos();
|
|
|
|
|
Obj.D4 = 100 * Obj.ActualPosition2;
|
|
|
|
|
Obj.D1 = 1000 * Obj.CommandedPosition2; // abs(1000 * (ap2 - Obj.CommandedPosition2)); // Step2.actPos();
|
|
|
|
|
Obj.D2 = 1000 * Step->stepgen_array[1].pos_fb; // Step->stepgen_array[1].rawcount % INT16_MAX; // Step->stepgen_array[1].freq;
|
|
|
|
|
Obj.D3 = Step->stepgen_array[1].freq;
|
|
|
|
|
Obj.D4 = Step->stepgen_array[1].rawcount % UINT16_MAX;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void ESC_interrupt_enable(uint32_t mask);
|
|
|
|
|
@@ -149,54 +177,35 @@ static esc_cfg_t config =
|
|
|
|
|
.esc_hw_eep_handler = NULL,
|
|
|
|
|
.esc_check_dc_handler = dc_checker,
|
|
|
|
|
};
|
|
|
|
|
void measureCrystalFrequency(void);
|
|
|
|
|
|
|
|
|
|
volatile byte serveIRQ = 0;
|
|
|
|
|
void basePeriodCB(void)
|
|
|
|
|
{
|
|
|
|
|
uint32_t one = micros();
|
|
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
|
if (Step && Step->stepgen_array)
|
|
|
|
|
{
|
|
|
|
|
Step->make_pulses(Step->stepgen_array, BASE_PERIOD);
|
|
|
|
|
#if 1
|
|
|
|
|
for (int i = 0; i < Step->num_chan; i++)
|
|
|
|
|
{
|
|
|
|
|
digitalWrite(Step->dirPin[i], Step->stepgen_array[i].phase[DIR_PIN] ? LOW : HIGH);
|
|
|
|
|
digitalWrite(Step->stepPin[i], Step->stepgen_array[i].phase[STEP_PIN] ? HIGH : LOW);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
isrTime = micros() - one;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void setup(void)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
Serial1.begin(115200);
|
|
|
|
|
|
|
|
|
|
delay(2000);
|
|
|
|
|
Serial1.printf("Hello world\n");
|
|
|
|
|
#if 0
|
|
|
|
|
measureCrystalFrequency(); // Calibrate crystal frequency
|
|
|
|
|
#endif
|
|
|
|
|
// rcc_config(); // Needed by encoder, probably breaks some timers.
|
|
|
|
|
ecat_slv_init(&config);
|
|
|
|
|
|
|
|
|
|
pinMode(PA11, OUTPUT);
|
|
|
|
|
pinMode(PA12, OUTPUT);
|
|
|
|
|
pinMode(PC9, OUTPUT);
|
|
|
|
|
pinMode(PC10, OUTPUT);
|
|
|
|
|
pinMode(PA11, OUTPUT); // Step X
|
|
|
|
|
pinMode(PA12, OUTPUT); // Dir X
|
|
|
|
|
pinMode(PC9, OUTPUT); // Step Z
|
|
|
|
|
pinMode(PC10, OUTPUT); // Dir Z
|
|
|
|
|
|
|
|
|
|
Step = new StepGen3;
|
|
|
|
|
|
|
|
|
|
myTim = new HardwareTimer(TIM11); // The base period timer
|
|
|
|
|
myTim->setPrescaleFactor(168 / 8); // 1 MHz
|
|
|
|
|
myTim->setPreloadEnable(true);
|
|
|
|
|
myTim->setOverflow(8 * BASE_PERIOD / 1200); // usecs 6 usec period is min with no load
|
|
|
|
|
// myTim->setOverflow(1000, HERTZ_FORMAT);
|
|
|
|
|
myTim->attachInterrupt(basePeriodCB);
|
|
|
|
|
myTim->refresh();
|
|
|
|
|
myTim->resume();
|
|
|
|
|
#if 0
|
|
|
|
|
syncTimer = new HardwareTimer(TIM2); // The base period timer
|
|
|
|
|
baseTimer = new HardwareTimer(TIM1); // The base period timer
|
|
|
|
|
uint32_t usecs = BASE_PERIOD/1000;
|
|
|
|
|
setFrequencyAdjustedMicrosSeconds(baseTimer, usecs);
|
|
|
|
|
baseTimer->attachInterrupt(basePeriodCB);
|
|
|
|
|
|
|
|
|
|
syncTimer = new HardwareTimer(TIM3); // The Linuxcnc servo period sync timer
|
|
|
|
|
syncTimer->attachInterrupt(syncWithLCNC);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void loop(void)
|
|
|
|
|
@@ -221,11 +230,13 @@ void loop(void)
|
|
|
|
|
|
|
|
|
|
void sync0Handler(void)
|
|
|
|
|
{
|
|
|
|
|
irqTime = longTime.extendTime(micros());
|
|
|
|
|
ALEventIRQ = ESC_ALeventread();
|
|
|
|
|
// if (ALEventIRQ & ESCREG_ALEVENT_SM2)
|
|
|
|
|
{
|
|
|
|
|
serveIRQ = 1;
|
|
|
|
|
irqTime = longTime.extendTime(micros());
|
|
|
|
|
|
|
|
|
|
irqCnt++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
@@ -279,3 +290,60 @@ uint16_t dc_checker(void)
|
|
|
|
|
// StepGen3::sync0CycleTime = ESC_SYNC0cycletime(); // nsecs
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Code to calibrate the crystal.
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
#include <HardwareTimer.h>
|
|
|
|
|
HardwareTimer *timer;
|
|
|
|
|
volatile uint32_t cnt;
|
|
|
|
|
|
|
|
|
|
void CB(void)
|
|
|
|
|
{
|
|
|
|
|
if (cnt-- == 0)
|
|
|
|
|
{
|
|
|
|
|
timer->pause();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void setFrequencyAdjustedMicrosSeconds(HardwareTimer *timer, uint32_t usecs)
|
|
|
|
|
{
|
|
|
|
|
const uint16_t calibrated1000 = 1042; // <- This is the factor to adjust to make 1 sec = 1 sec
|
|
|
|
|
uint32_t period_cyc = (usecs * (timer->getTimerClkFreq() / 1000)) / calibrated1000; // Avoid overflow during math
|
|
|
|
|
uint32_t Prescalerfactor = (period_cyc / 0x10000) + 1;
|
|
|
|
|
uint32_t PeriodTicks = period_cyc / Prescalerfactor;
|
|
|
|
|
timer->setPrescaleFactor(Prescalerfactor);
|
|
|
|
|
timer->setOverflow(PeriodTicks, TICK_FORMAT);
|
|
|
|
|
// Serial1.printf("Period_cyc=%u Prescalefactor =%u ticks = %u\n", period_cyc, Prescalerfactor, PeriodTicks);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void measureCrystalFrequency(void)
|
|
|
|
|
{
|
|
|
|
|
timer = new HardwareTimer(TIM1);
|
|
|
|
|
Serial1.begin(115200);
|
|
|
|
|
delay(3000);
|
|
|
|
|
Serial1.printf("Clock freq = %u\n", timer->getTimerClkFreq());
|
|
|
|
|
setFrequencyAdjustedMicrosSeconds(timer, 1000);
|
|
|
|
|
timer->refresh();
|
|
|
|
|
timer->attachInterrupt(CB);
|
|
|
|
|
cnt = 10000;
|
|
|
|
|
|
|
|
|
|
Serial1.printf("\n");
|
|
|
|
|
uint32_t startT = micros();
|
|
|
|
|
timer->resume();
|
|
|
|
|
|
|
|
|
|
while (cnt != 0)
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
uint32_t endT = micros();
|
|
|
|
|
uint32_t diffT = endT - startT;
|
|
|
|
|
Serial1.printf("\n");
|
|
|
|
|
Serial1.printf("diff = %u\n", diffT);
|
|
|
|
|
|
|
|
|
|
Serial1.printf("\n");
|
|
|
|
|
delay(10000);
|
|
|
|
|
Serial1.printf("\n");
|
|
|
|
|
|
|
|
|
|
exit(0);
|
|
|
|
|
}
|
|
|
|
|
|