Added frequency-calibration to base-thread timer

This commit is contained in:
Hakan Bastedt
2024-04-03 20:33:57 +02:00
parent 1d14e1f295
commit 9e00caf7c5
4 changed files with 158 additions and 74 deletions

View File

@@ -36,6 +36,7 @@ typedef struct
unsigned int step_space; /* parameter: min step pulse spacing */ unsigned int step_space; /* parameter: min step pulse spacing */
double old_pos_cmd; /* previous position command (counts) */ double old_pos_cmd; /* previous position command (counts) */
int count; /* pin: captured feedback in counts */ int count; /* pin: captured feedback in counts */
#define double float
double pos_scale; /* param: steps per position unit */ double pos_scale; /* param: steps per position unit */
double old_scale; /* stored scale value */ double old_scale; /* stored scale value */
double scale_recip; /* reciprocal value used for scaling */ double scale_recip; /* reciprocal value used for scaling */
@@ -89,9 +90,10 @@ public:
double dt; // update_freq period in seconds */ double dt; // update_freq period in seconds */
double recip_dt; // recprocal of period, avoids divides */ double recip_dt; // recprocal of period, avoids divides */
volatile uint64_t cnt = 0; // Debug counter volatile uint64_t cnt = 0; // Debug counter
#undef double
StepGen3(void); StepGen3(void);
void updateStepGen(double pos_cmd1, double pos_cmd2); void updateStepGen(double pos_cmd1, double pos_cmd2);
void makeAllPulses(void);
int rtapi_app_main(); int rtapi_app_main();
int export_stepgen(int num, stepgen_t *addr, int step_type, int pos_mode); int export_stepgen(int num, stepgen_t *addr, int step_type, int pos_mode);
void make_pulses(void *arg, long period); void make_pulses(void *arg, long period);
@@ -144,11 +146,11 @@ private:
}; };
// For the example // For the example
#define BASE_PERIOD 50000 // 12 is max #define BASE_PERIOD 40000 // 40000 is max
#define SERVO_PERIOD 1000000 #define SERVO_PERIOD 1000000
#define JOINT_X_STEPGEN_MAXACCEL (1.2 * 520.0) #define JOINT_X_STEPGEN_MAXACCEL (52000.0)
#define JOINT_Z_STEPGEN_MAXACCEL (52000.0)
#define JOINT_X_SCALE -200 #define JOINT_X_SCALE -200
#define JOINT_Z_STEPGEN_MAXACCEL (1.2 * 520.0)
#define JOINT_Z_SCALE -80 #define JOINT_Z_SCALE -80
#endif #endif

View File

@@ -16,6 +16,8 @@ upload_protocol = stlink
debug_tool = stlink debug_tool = stlink
debug_build_flags = -O0 -g -ggdb debug_build_flags = -O0 -g -ggdb
monitor_port = COM7 monitor_port = COM7
;monitor_port = /dev/ttyUSB0
monitor_filters = send_on_enter, time, colorize, log2file
monitor_speed = 115200 monitor_speed = 115200
build_flags = -Wl,--no-warn-rwx-segment build_flags = -Wl,--no-warn-rwx-segment
lib_deps = lib_deps =

View File

@@ -1096,9 +1096,9 @@ StepGen3::StepGen3(void)
rtapi_app_main(); rtapi_app_main();
stepgen_array[0].enable = 1; stepgen_array[0].enable = 1;
stepgen_array[0].pos_scale = JOINT_X_SCALE; stepgen_array[0].pos_scale = JOINT_X_SCALE;
stepgen_array[0].maxaccel = JOINT_X_STEPGEN_MAXACCEL; //stepgen_array[0].maxaccel = JOINT_X_STEPGEN_MAXACCEL;
stepgen_array[1].pos_scale = JOINT_Z_SCALE; stepgen_array[1].pos_scale = JOINT_Z_SCALE;
stepgen_array[1].maxaccel = JOINT_Z_STEPGEN_MAXACCEL; //stepgen_array[1].maxaccel = JOINT_Z_STEPGEN_MAXACCEL;
stepgen_array[0].enable = stepgen_array[1].enable = 1; stepgen_array[0].enable = stepgen_array[1].enable = 1;
} }
@@ -1181,3 +1181,15 @@ int StepGen3::rtapi_app_main()
} }
return 0; return 0;
} }
extern volatile uint64_t makePulsesCnt;
void StepGen3::makeAllPulses(void)
{
makePulsesCnt++;
make_pulses(stepgen_array, BASE_PERIOD);
for (int i = 0; i < num_chan; i++)
{
digitalWrite(dirPin[i], stepgen_array[i].phase[DIR_PIN] ? LOW : HIGH);
digitalWrite(stepPin[i], stepgen_array[i].phase[STEP_PIN] ? HIGH : LOW);
}
}

View File

@@ -10,7 +10,7 @@ _Objects Obj;
HardwareSerial Serial1(PA10, PA9); HardwareSerial Serial1(PA10, PA9);
volatile uint16_t ALEventIRQ; // ALEvent that caused the interrupt volatile uint16_t ALEventIRQ; // ALEvent that caused the interrupt
HardwareTimer *myTim; // The base period timer HardwareTimer *baseTimer; // The base period timer
HardwareTimer *syncTimer; // The timer that syncs "with linuxcnc cycle" HardwareTimer *syncTimer; // The timer that syncs "with linuxcnc cycle"
#include "MyEncoder.h" #include "MyEncoder.h"
@@ -27,9 +27,10 @@ StepGen3 *Step = 0;
#include "extend32to64.h" #include "extend32to64.h"
CircularBuffer<uint64_t, 200> Tim; CircularBuffer<uint64_t, 200> Tim;
volatile uint64_t irqTime = 0, thenTime = 0, nowTime = 0; volatile uint64_t irqTime = 0, thenTime = 0, nowTime = 0, irqCnt = 0, prevSyncTime = 0, syncTime = 0, deltaSyncTime;
extend32to64 longTime; extend32to64 longTime;
volatile uint16_t isrTime = 0, isr2Time = 0; volatile uint16_t isrTime = 0, isr2Time = 0;
void setFrequencyAdjustedMicrosSeconds(HardwareTimer *timer, uint32_t usecs);
void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation
{ {
@@ -41,14 +42,39 @@ void cb_set_outputs(void) // Master outputs gets here, slave inputs, first opera
// Step2.enable(1); // Step2.enable(1);
} }
volatile uint16_t basePeriodCnt;
volatile uint64_t makePulsesCnt = 0, prevMakePulsesCnt = 0;
volatile uint16_t deltaMakePulsesCnt;
volatile double pos_cmd1, pos_cmd2; volatile double pos_cmd1, pos_cmd2;
volatile uint64_t syncTime = 0, oldSyncTime = 0;
void syncWithLCNC() void syncWithLCNC()
{ {
if (Step)
Step->updateStepGen(pos_cmd1, pos_cmd2);
syncTimer->pause(); syncTimer->pause();
prevSyncTime = syncTime;
syncTime = longTime.extendTime(micros()); syncTime = longTime.extendTime(micros());
deltaSyncTime = syncTime - prevSyncTime;
deltaMakePulsesCnt = makePulsesCnt - prevMakePulsesCnt;
prevMakePulsesCnt = makePulsesCnt;
Step->updateStepGen(pos_cmd1, pos_cmd2); // Update positions
Step->makeAllPulses(); // Make first step right here
basePeriodCnt = 1000000 / BASE_PERIOD; //
baseTimer->setCount(0);
baseTimer->refresh(); //
baseTimer->resume(); // Make the other steps in ISR
// baseTimer->isRunning();
}
void basePeriodCB(void)
{
uint32_t one = micros();
Step->makeAllPulses();
isrTime = micros() - one;
if (--basePeriodCnt <= 0) // Stop
{
baseTimer->pause();
}
} }
uint16_t nLoops; uint16_t nLoops;
@@ -69,31 +95,28 @@ void handleStepper(void)
Obj.ActualPosition1 = Obj.CommandedPosition1; Obj.ActualPosition1 = Obj.CommandedPosition1;
Obj.ActualPosition2 = Obj.CommandedPosition2; Obj.ActualPosition2 = Obj.CommandedPosition2;
if (Step)
{
Step->stepgen_array[0].pos_scale = -Obj.StepsPerMM1; Step->stepgen_array[0].pos_scale = -Obj.StepsPerMM1;
Step->stepgen_array[1].pos_scale = -Obj.StepsPerMM2; Step->stepgen_array[1].pos_scale = -Obj.StepsPerMM2;
Obj.ActualPosition1 = Step->stepgen_array[0].pos_fb; Obj.ActualPosition1 = Step->stepgen_array[0].pos_fb;
Obj.ActualPosition2 = Step->stepgen_array[1].pos_fb; Obj.ActualPosition2 = Step->stepgen_array[1].pos_fb;
}
#if 0
uint32_t diffT = longTime.extendTime(micros()) - irqTime; uint32_t diffT = longTime.extendTime(micros()) - irqTime;
delayT = 700 - diffT; delayT = 500 - diffT;
if (delayT > 0 && delayT < 900) if (delayT > 0 && delayT < 900)
{ {
syncTimer->setOverflow(delayT, MICROSEC_FORMAT); setFrequencyAdjustedMicrosSeconds(syncTimer, delayT);
syncTimer->refresh(); syncTimer->refresh();
syncTimer->resume(); syncTimer->resume();
} }
else else
#endif
{ {
syncWithLCNC(); syncWithLCNC();
} }
isr2Time = micros() - t; isr2Time = micros() - t;
} }
uint16_t oldCnt = 0; uint16_t oldCnt = 0;
uint64_t startTime = 0;
uint16_t avgTime = 0;
void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
{ {
// Obj.IndexStatus = Encoder1.indexHappened(); // Obj.IndexStatus = Encoder1.indexHappened();
@@ -101,7 +124,7 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
// Obj.EncFrequency = Encoder1.frequency(ESCvar.Time); // Obj.EncFrequency = Encoder1.frequency(ESCvar.Time);
// Obj.IndexByte = Encoder1.getIndexState(); // Obj.IndexByte = Encoder1.getIndexState();
float_t ap2 = Obj.ActualPosition2; float_t ap2 = Obj.ActualPosition2;
#if 1 #if 0
uint64_t dTim = irqTime - thenTime; // Debug. Getting jitter over the last 200 milliseconds uint64_t dTim = irqTime - thenTime; // Debug. Getting jitter over the last 200 milliseconds
Tim.push(dTim); Tim.push(dTim);
uint64_t max_Tim = 0, min_Tim = UINT64_MAX; uint64_t max_Tim = 0, min_Tim = UINT64_MAX;
@@ -115,14 +138,19 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
} }
thenTime = irqTime; thenTime = irqTime;
#endif #endif
if (irqCnt == 1000)
startTime = irqTime;
if (irqCnt == 11000)
avgTime = (irqTime - startTime) / 1000;
Obj.DiffT = longTime.extendTime(micros()) - irqTime; // max_Tim - min_Tim; // Debug Obj.DiffT = longTime.extendTime(micros()) - irqTime; // max_Tim - min_Tim; // Debug
Obj.D1 = nLoops;
uint16_t newCnt = isrTime; uint16_t newCnt = isrTime;
// Obj.D1 = newCnt - oldCnt; // Obj.D1 = newCnt - oldCnt;
oldCnt = newCnt; oldCnt = newCnt;
Obj.D2 = isrTime; // Step->stepgen_array[1].freq; Obj.D1 = 1000 * Obj.CommandedPosition2; // abs(1000 * (ap2 - Obj.CommandedPosition2)); // Step2.actPos();
Obj.D3 = isr2Time;//100 * Obj.CommandedPosition2; // abs(1000 * (ap2 - Obj.CommandedPosition2)); // Step2.actPos(); Obj.D2 = 1000 * Step->stepgen_array[1].pos_fb; // Step->stepgen_array[1].rawcount % INT16_MAX; // Step->stepgen_array[1].freq;
Obj.D4 = 100 * Obj.ActualPosition2; Obj.D3 = Step->stepgen_array[1].freq;
Obj.D4 = Step->stepgen_array[1].rawcount % UINT16_MAX;
} }
void ESC_interrupt_enable(uint32_t mask); void ESC_interrupt_enable(uint32_t mask);
@@ -149,54 +177,35 @@ static esc_cfg_t config =
.esc_hw_eep_handler = NULL, .esc_hw_eep_handler = NULL,
.esc_check_dc_handler = dc_checker, .esc_check_dc_handler = dc_checker,
}; };
void measureCrystalFrequency(void);
volatile byte serveIRQ = 0; volatile byte serveIRQ = 0;
void basePeriodCB(void)
{
uint32_t one = micros();
#if 1
if (Step && Step->stepgen_array)
{
Step->make_pulses(Step->stepgen_array, BASE_PERIOD);
#if 1
for (int i = 0; i < Step->num_chan; i++)
{
digitalWrite(Step->dirPin[i], Step->stepgen_array[i].phase[DIR_PIN] ? LOW : HIGH);
digitalWrite(Step->stepPin[i], Step->stepgen_array[i].phase[STEP_PIN] ? HIGH : LOW);
}
#endif
}
#endif
isrTime = micros() - one;
}
void setup(void) void setup(void)
{ {
Serial1.begin(115200); Serial1.begin(115200);
delay(2000);
Serial1.printf("Hello world\n");
#if 0
measureCrystalFrequency(); // Calibrate crystal frequency
#endif
// rcc_config(); // Needed by encoder, probably breaks some timers. // rcc_config(); // Needed by encoder, probably breaks some timers.
ecat_slv_init(&config); ecat_slv_init(&config);
pinMode(PA11, OUTPUT); pinMode(PA11, OUTPUT); // Step X
pinMode(PA12, OUTPUT); pinMode(PA12, OUTPUT); // Dir X
pinMode(PC9, OUTPUT); pinMode(PC9, OUTPUT); // Step Z
pinMode(PC10, OUTPUT); pinMode(PC10, OUTPUT); // Dir Z
Step = new StepGen3; Step = new StepGen3;
myTim = new HardwareTimer(TIM11); // The base period timer baseTimer = new HardwareTimer(TIM1); // The base period timer
myTim->setPrescaleFactor(168 / 8); // 1 MHz uint32_t usecs = BASE_PERIOD/1000;
myTim->setPreloadEnable(true); setFrequencyAdjustedMicrosSeconds(baseTimer, usecs);
myTim->setOverflow(8 * BASE_PERIOD / 1200); // usecs 6 usec period is min with no load baseTimer->attachInterrupt(basePeriodCB);
// myTim->setOverflow(1000, HERTZ_FORMAT);
myTim->attachInterrupt(basePeriodCB); syncTimer = new HardwareTimer(TIM3); // The Linuxcnc servo period sync timer
myTim->refresh();
myTim->resume();
#if 0
syncTimer = new HardwareTimer(TIM2); // The base period timer
syncTimer->attachInterrupt(syncWithLCNC); syncTimer->attachInterrupt(syncWithLCNC);
#endif
} }
void loop(void) void loop(void)
@@ -221,11 +230,13 @@ void loop(void)
void sync0Handler(void) void sync0Handler(void)
{ {
irqTime = longTime.extendTime(micros());
ALEventIRQ = ESC_ALeventread(); ALEventIRQ = ESC_ALeventread();
// if (ALEventIRQ & ESCREG_ALEVENT_SM2) // if (ALEventIRQ & ESCREG_ALEVENT_SM2)
{ {
serveIRQ = 1; serveIRQ = 1;
irqTime = longTime.extendTime(micros());
irqCnt++;
} }
} }
@@ -279,3 +290,60 @@ uint16_t dc_checker(void)
// StepGen3::sync0CycleTime = ESC_SYNC0cycletime(); // nsecs // StepGen3::sync0CycleTime = ESC_SYNC0cycletime(); // nsecs
return 0; return 0;
} }
//
// Code to calibrate the crystal.
//
#include <HardwareTimer.h>
HardwareTimer *timer;
volatile uint32_t cnt;
void CB(void)
{
if (cnt-- == 0)
{
timer->pause();
}
}
void setFrequencyAdjustedMicrosSeconds(HardwareTimer *timer, uint32_t usecs)
{
const uint16_t calibrated1000 = 1042; // <- This is the factor to adjust to make 1 sec = 1 sec
uint32_t period_cyc = (usecs * (timer->getTimerClkFreq() / 1000)) / calibrated1000; // Avoid overflow during math
uint32_t Prescalerfactor = (period_cyc / 0x10000) + 1;
uint32_t PeriodTicks = period_cyc / Prescalerfactor;
timer->setPrescaleFactor(Prescalerfactor);
timer->setOverflow(PeriodTicks, TICK_FORMAT);
// Serial1.printf("Period_cyc=%u Prescalefactor =%u ticks = %u\n", period_cyc, Prescalerfactor, PeriodTicks);
}
void measureCrystalFrequency(void)
{
timer = new HardwareTimer(TIM1);
Serial1.begin(115200);
delay(3000);
Serial1.printf("Clock freq = %u\n", timer->getTimerClkFreq());
setFrequencyAdjustedMicrosSeconds(timer, 1000);
timer->refresh();
timer->attachInterrupt(CB);
cnt = 10000;
Serial1.printf("\n");
uint32_t startT = micros();
timer->resume();
while (cnt != 0)
;
uint32_t endT = micros();
uint32_t diffT = endT - startT;
Serial1.printf("\n");
Serial1.printf("diff = %u\n", diffT);
Serial1.printf("\n");
delay(10000);
Serial1.printf("\n");
exit(0);
}