wip
This commit is contained in:
@@ -6,19 +6,17 @@
|
||||
class StepGen2
|
||||
{
|
||||
private:
|
||||
volatile uint8_t timerIsRunning;
|
||||
volatile int32_t timerStepPosition;
|
||||
volatile int32_t timerStepDirection;
|
||||
volatile int32_t timerStepPositionAtEnd;
|
||||
volatile int32_t timerNewEndStepPosition;
|
||||
volatile uint32_t timerNewCycleTime;
|
||||
volatile double_t actualPosition;
|
||||
volatile double_t requestedPosition;
|
||||
volatile double_t oldPosition;
|
||||
volatile int32_t oldStepPosition;
|
||||
volatile uint8_t enabled;
|
||||
volatile int32_t nSteps;
|
||||
volatile float Tstart;
|
||||
volatile float Tstop;
|
||||
volatile float Tstep;
|
||||
HardwareTimer *MyTim;
|
||||
HardwareTimer *MyTim2;
|
||||
HardwareTimer *MyTim2; // 10,11,13,14
|
||||
int16_t stepsPerMM;
|
||||
uint8_t dirPin;
|
||||
PinName stepPin;
|
||||
@@ -34,10 +32,11 @@ public:
|
||||
static uint32_t sync0CycleTime;
|
||||
volatile uint32_t lcncCycleTime; // Linuxcnc nominal cycle time (1 ms often)
|
||||
|
||||
StepGen2(TIM_TypeDef *Timer, TIM_TypeDef *Timer2, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void));
|
||||
StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void), TIM_TypeDef *Timer2, void irq2(void));
|
||||
|
||||
uint32_t handleStepper(void);
|
||||
void timerCB();
|
||||
void timer2CB();
|
||||
void enable(uint8_t yes);
|
||||
|
||||
void reqPos(double_t pos) { requestedPosition = pos; };
|
||||
|
||||
@@ -2,13 +2,8 @@
|
||||
#include <stdio.h>
|
||||
#include "StepGen2.h"
|
||||
|
||||
StepGen2::StepGen2(TIM_TypeDef *Timer, TIM_TypeDef *Timer2, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void))
|
||||
StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void), TIM_TypeDef *Timer2, void irq2(void))
|
||||
{
|
||||
timerIsRunning = 0;
|
||||
timerStepPosition = 0;
|
||||
timerStepDirection = 0;
|
||||
timerStepPositionAtEnd = 0;
|
||||
timerNewEndStepPosition = 0;
|
||||
actualPosition = 0;
|
||||
requestedPosition = 0;
|
||||
oldPosition = 0;
|
||||
@@ -23,6 +18,7 @@ StepGen2::StepGen2(TIM_TypeDef *Timer, TIM_TypeDef *Timer2, uint32_t _timerChann
|
||||
MyTim->attachInterrupt(irq);
|
||||
pinMode(dirPin, OUTPUT);
|
||||
MyTim2 = new HardwareTimer(Timer2);
|
||||
MyTim2->attachInterrupt(irq2);
|
||||
}
|
||||
|
||||
uint32_t StepGen2::handleStepper(void)
|
||||
@@ -31,42 +27,55 @@ uint32_t StepGen2::handleStepper(void)
|
||||
return 1;
|
||||
lcncCycleTime = StepGen2::sync0CycleTime;
|
||||
|
||||
float y0TRAJ = oldPos() * getScale(); // Straight line equation between old and new point
|
||||
float y1TRAJ = reqPos() * getScale(); // Time runs between 0 and lcncCycleTime (1 ms)
|
||||
float kTRAJ = (y1TRAJ - y0TRAJ) / lcncCycleTime; // Slope
|
||||
float mTRAJ = y1TRAJ - kTRAJ * lcncCycleTime; // Intercept
|
||||
int32_t stepPosStart = floor(y0TRAJ); // First step position, integer value of first point position
|
||||
int32_t stepPosStop = floor(y1TRAJ); // End step position
|
||||
//
|
||||
float Tstart = (stepPosStart - mTRAJ) / kTRAJ; // First step at this time
|
||||
float Tstop = (stepPosStop - mTRAJ) / kTRAJ; // And the last step
|
||||
float Tstep = fabs(1.0 / kTRAJ); // Time between steps
|
||||
float stepFrequency = fabs(kTRAJ); // 1/Tstep - which is kTRAJ
|
||||
//
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return updatePosAndReturn(stepPosStop, 2); //
|
||||
if (/* 1.0 / Tstep */ kTRAJ > 200000) //
|
||||
{ // Too high frequency, deal with this later.
|
||||
return updatePosAndReturn(stepPosStop, 3); //
|
||||
} //
|
||||
int8_t dir = stepPosStart > stepPosStop ? -1 : 1; // Which direction to step in
|
||||
//
|
||||
if (abs(stepPosStart - oldStepPos()) == 0) // StepPosStart and oldStepPos() are often the same, but don't redo the step
|
||||
{ //
|
||||
stepPosStart += dir; // New first step
|
||||
Tstart += Tstep; //
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return updatePosAndReturn(stepPosStop, 4); //
|
||||
} //
|
||||
if (abs(stepPosStart - oldStepPos()) > 1) // Shouldn't happen
|
||||
{ //
|
||||
return updatePosAndReturn(stepPosStop, 5); //
|
||||
} //
|
||||
// Now the old point and the start point should be separate.
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return updatePosAndReturn(stepPosStop, 6); // Check this again
|
||||
// Tstart, Tstep and Tstop defines the coming pwm-sequence.
|
||||
return 0; // Always do one pulse at Tstart when we come here. Next Tstart+Tstep and so on until Tstop.
|
||||
float y0TRAJ = oldPos() * getScale(); // Straight line equation between old and new point
|
||||
float y1TRAJ = reqPos() * getScale(); // Time runs between 0 and lcncCycleTime (1 ms)
|
||||
float kTRAJ = (y1TRAJ - y0TRAJ) / lcncCycleTime; // Slope
|
||||
float mTRAJ = y1TRAJ - kTRAJ * lcncCycleTime; // Intercept
|
||||
int32_t stepPosStart = floor(y0TRAJ); // First step position, integer value of first point position
|
||||
int32_t stepPosStop = floor(y1TRAJ); // End step position
|
||||
//
|
||||
float Tstart = (stepPosStart - mTRAJ) / kTRAJ; // First step at this time
|
||||
float Tstop = (stepPosStop - mTRAJ) / kTRAJ; // And the last step
|
||||
float Tstep = fabs(1.0 / kTRAJ); // Time between steps
|
||||
float stepFrequency = fabs(kTRAJ); // 1/Tstep - which is kTRAJ
|
||||
//
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return updatePosAndReturn(stepPosStop, 2); //
|
||||
if (/* 1.0 / Tstep */ kTRAJ > 200000) //
|
||||
{ // Too high frequency, deal with this later.
|
||||
return updatePosAndReturn(stepPosStop, 3); //
|
||||
} //
|
||||
int8_t dir = stepPosStart > stepPosStop ? -1 : 1; // Which direction to step in
|
||||
//
|
||||
if (abs(stepPosStart - oldStepPos()) == 0) // StepPosStart and oldStepPos() are often the same, but don't redo the step
|
||||
{ //
|
||||
stepPosStart += dir; // New first step
|
||||
Tstart += Tstep; //
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return updatePosAndReturn(stepPosStop, 4); //
|
||||
} //
|
||||
if (abs(stepPosStart - oldStepPos()) > 1) // Shouldn't happen
|
||||
{ //
|
||||
return updatePosAndReturn(stepPosStop, 5); //
|
||||
} //
|
||||
// Now the old point and the start point should be separate.
|
||||
if (Tstart > lcncCycleTime) // Not enough movement to make a step
|
||||
return updatePosAndReturn(stepPosStop, 6); // Check this again
|
||||
// Tstart, Tstep and Tstop defines the coming pwm-sequence.
|
||||
//
|
||||
MyTim2->setOverflow(Tstart + Tjitter, MICROSEC_FORMAT); // All handled by irqs
|
||||
MyTim2->resume();
|
||||
return updatePosAndReturn(stepPosStop, 0);
|
||||
}
|
||||
void StepGen2::timer2CB()
|
||||
{
|
||||
MyTim2->pause(); // Once is enough.
|
||||
MyTim->setMode(timerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
|
||||
MyTim->setOverflow(floor(1e6 / Tstep), HERTZ_FORMAT); // 100000 microseconds = 100 milliseconds
|
||||
MyTim->setCaptureCompare(timerChan, 50, PERCENT_COMPARE_FORMAT); // 50%
|
||||
nSteps = round((Tstop - Tstart) / Tstep + 1);
|
||||
if (nSteps > 0)
|
||||
MyTim->resume();
|
||||
}
|
||||
void StepGen2::timerCB()
|
||||
{
|
||||
@@ -102,6 +111,7 @@ void StepGen2::timerCB()
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
uint32_t StepGen2::updatePosAndReturn(int32_t stepPosStop, uint32_t i)
|
||||
{ //
|
||||
oldPos(reqPos()); // Save the numeric position for next step
|
||||
|
||||
@@ -34,8 +34,10 @@ void timerCallbackStep2(void)
|
||||
#endif
|
||||
#include "StepGen2.h"
|
||||
void timerCallbackStep(void);
|
||||
StepGen2 Step(TIM1, TIM10, 4, PA_11, PA12, timerCallbackStep);
|
||||
void timerCallbackStepStart(void);
|
||||
StepGen2 Step(TIM1, 4, PA_11, PA12, timerCallbackStep, TIM10, timerCallbackStepStart);
|
||||
void timerCallbackStep(void) { Step.timerCB(); }
|
||||
void timerCallbackStepStart(void) { Step.timer2CB(); }
|
||||
CircularBuffer<uint32_t, 200> Tim;
|
||||
volatile uint64_t nowTime = 0, thenTime = 0;
|
||||
|
||||
|
||||
Reference in New Issue
Block a user