Direction output to dirPin.
This commit is contained in:
@@ -15,7 +15,7 @@ public:
|
|||||||
volatile float Tstartf; // Starting delay in secs
|
volatile float Tstartf; // Starting delay in secs
|
||||||
volatile uint32_t Tstartu; // Starting delay in usecs
|
volatile uint32_t Tstartu; // Starting delay in usecs
|
||||||
volatile float Tpulses; // Time it takes to do pulses. Debug
|
volatile float Tpulses; // Time it takes to do pulses. Debug
|
||||||
const float maxAllowedFrequency = 100000; // 100 kHz for now
|
|
||||||
HardwareTimer *pulseTimer;
|
HardwareTimer *pulseTimer;
|
||||||
uint32_t pulseTimerChan;
|
uint32_t pulseTimerChan;
|
||||||
HardwareTimer *startTimer; // 10,11,13,14
|
HardwareTimer *startTimer; // 10,11,13,14
|
||||||
@@ -23,6 +23,10 @@ public:
|
|||||||
PinName stepPin;
|
PinName stepPin;
|
||||||
const uint32_t Tjitter = 500; // Time unit is microseconds
|
const uint32_t Tjitter = 500; // Time unit is microseconds
|
||||||
uint64_t dbg;
|
uint64_t dbg;
|
||||||
|
const uint16_t t2 = 5; // DIR is ahead of PUL with at least 5 usecs
|
||||||
|
const uint16_t t3 = 3; // Pulse width at least 2.5 usecs
|
||||||
|
const uint16_t t4 = 3; // Low level width not less than 2.5 usecs
|
||||||
|
const float maxAllowedFrequency = 1000000 / float(t3 + t4) * 0.9; // 150 kHz for now
|
||||||
|
|
||||||
public:
|
public:
|
||||||
volatile double_t commandedPosition; // End position when this cycle is completed
|
volatile double_t commandedPosition; // End position when this cycle is completed
|
||||||
|
|||||||
@@ -29,34 +29,26 @@ StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin,
|
|||||||
extern volatile uint32_t cnt;
|
extern volatile uint32_t cnt;
|
||||||
uint32_t StepGen2::handleStepper(uint64_t irqTime)
|
uint32_t StepGen2::handleStepper(uint64_t irqTime)
|
||||||
{
|
{
|
||||||
digitalWrite(dirPin, cnt++ % 2);
|
|
||||||
if (!enabled)
|
if (!enabled)
|
||||||
return updatePos(0);
|
return updatePos(0);
|
||||||
|
|
||||||
lcncCycleTime = StepGen2::sync0CycleTime * 1.0e-6; // was usec, became sec
|
lcncCycleTime = StepGen2::sync0CycleTime * 1.0e-6; // was usec, became sec
|
||||||
commandedStepPosition = floor(commandedPosition * stepsPerMM); // Scale position to steps
|
commandedStepPosition = floor(commandedPosition * stepsPerMM); // Scale position to steps
|
||||||
if (initialStepPosition == commandedStepPosition) // No movement
|
if (initialStepPosition == commandedStepPosition) // No movement
|
||||||
return 1;
|
return updatePos(1);
|
||||||
|
|
||||||
float approximateFrequency = fabs(initialStepPosition - commandedStepPosition) // We must take at least one step
|
nSteps = commandedStepPosition - initialStepPosition;
|
||||||
/ lcncCycleTime; // from here on
|
|
||||||
// if (approximateFrequency > maxAllowedFrequency) // Stay on this position
|
|
||||||
// return 1;
|
|
||||||
|
|
||||||
float kTRAJ = (commandedPosition - initialPosition) / lcncCycleTime; // Straight line equation
|
|
||||||
float mTRAJ = initialPosition; // position = kTRAJ x time + mTRAJ
|
|
||||||
// Operating on incoming positions (not steps)
|
|
||||||
// if (fabs(kTRAJ * lcncCycleTime * stepsPerMM) < 0.01) // Very flat slope
|
|
||||||
nSteps = commandedStepPosition - initialStepPosition; //
|
|
||||||
|
|
||||||
if (abs(nSteps) < 1000) // Some small number
|
if (abs(nSteps) < 1000) // Some small number
|
||||||
{ //
|
{
|
||||||
frequency = (abs(nSteps) + 1) / lcncCycleTime;
|
frequency = (abs(nSteps) + 1) / lcncCycleTime;
|
||||||
Tpulses = abs(nSteps) / frequency;
|
Tpulses = abs(nSteps) / frequency;
|
||||||
Tstartf = (lcncCycleTime - Tpulses) / 2.0;
|
Tstartf = (lcncCycleTime - Tpulses) / 2.0;
|
||||||
}
|
}
|
||||||
else // Regular step train, up or down
|
else // Regular step train, up or down
|
||||||
{
|
{
|
||||||
|
float kTRAJ = (commandedPosition - initialPosition) / lcncCycleTime; // Straight line equation. position = kTRAJ x time + mTRAJ
|
||||||
|
float mTRAJ = initialPosition; // Operating on incoming positions (not steps)
|
||||||
if (kTRAJ > 0)
|
if (kTRAJ > 0)
|
||||||
Tstartf = (float(initialStepPosition + 1) / float(stepsPerMM) - mTRAJ) / kTRAJ;
|
Tstartf = (float(initialStepPosition + 1) / float(stepsPerMM) - mTRAJ) / kTRAJ;
|
||||||
else
|
else
|
||||||
@@ -69,15 +61,17 @@ uint32_t StepGen2::handleStepper(uint64_t irqTime)
|
|||||||
dbg = timeSinceISR;
|
dbg = timeSinceISR;
|
||||||
Tstartu = Tjitter + uint32_t(Tstartf * 1e6) - timeSinceISR; // Have already wasted some time since the irq.
|
Tstartu = Tjitter + uint32_t(Tstartf * 1e6) - timeSinceISR; // Have already wasted some time since the irq.
|
||||||
|
|
||||||
timerFrequency = uint32_t(frequency);
|
timerFrequency = uint32_t(ceil(frequency));
|
||||||
startTimer->setOverflow(Tstartu, MICROSEC_FORMAT); // All handled by irqs
|
startTimer->setOverflow(Tstartu, MICROSEC_FORMAT); // All handled by irqs
|
||||||
startTimer->resume();
|
startTimer->resume();
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
void StepGen2::startTimerCB()
|
void StepGen2::startTimerCB()
|
||||||
{
|
{
|
||||||
digitalWrite(dirPin, cnt++ % 2);
|
|
||||||
startTimer->pause(); // Once is enough.
|
startTimer->pause(); // Once is enough.
|
||||||
|
digitalWrite(dirPin, nSteps > 0 ? HIGH : LOW);
|
||||||
|
// There will be a short break here for t2 usecs, in the future.
|
||||||
timerPulseSteps = abs(nSteps);
|
timerPulseSteps = abs(nSteps);
|
||||||
pulseTimer->setMode(pulseTimerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
|
pulseTimer->setMode(pulseTimerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
|
||||||
pulseTimer->setOverflow(timerFrequency, HERTZ_FORMAT);
|
pulseTimer->setOverflow(timerFrequency, HERTZ_FORMAT);
|
||||||
@@ -90,7 +84,6 @@ void StepGen2::pulseTimerCB()
|
|||||||
if (timerPulseSteps == 0)
|
if (timerPulseSteps == 0)
|
||||||
{
|
{
|
||||||
pulseTimer->pause();
|
pulseTimer->pause();
|
||||||
digitalWrite(dirPin, cnt++ % 2);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user