Going for test in the lathe

This commit is contained in:
Hakan Bastedt
2024-02-13 10:49:57 +01:00
parent cbae816bd9
commit 2b2be4f63d
3 changed files with 58 additions and 49 deletions

View File

@@ -5,23 +5,23 @@
class StepGen2 class StepGen2
{ {
private: public:
volatile double_t actualPosition; volatile double_t actualPosition;
volatile int32_t nSteps; volatile int32_t nSteps;
volatile uint32_t timerPulseSteps; volatile uint32_t timerPulseSteps;
volatile uint32_t timerFrequency;
public: public:
volatile float Tstartf; // Starting delay in secs volatile float Tstartf; // Starting delay in secs
volatile uint32_t Tstartu; // Starting delay in usecs volatile uint32_t Tstartu; // Starting delay in usecs
private: volatile float Tpulses; // Time it takes to do pulses. Debug
public:
const float maxAllowedFrequency = 100000; // 100 kHz for now const float maxAllowedFrequency = 100000; // 100 kHz for now
HardwareTimer *pulseTimer; HardwareTimer *pulseTimer;
uint32_t pulseTimerChan; uint32_t pulseTimerChan;
HardwareTimer *startTimer; // 10,11,13,14 HardwareTimer *startTimer; // 10,11,13,14
uint8_t dirPin; uint8_t dirPin;
PinName stepPin; PinName stepPin;
const float Tjitter = 500.0; // Time unit is microseconds const uint32_t Tjitter = 500; // Time unit is microseconds
uint64_t dbg; uint64_t dbg;
public: public:
@@ -38,10 +38,19 @@ public:
StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void), TIM_TypeDef *Timer2, void irq2(void)); StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void), TIM_TypeDef *Timer2, void irq2(void));
uint32_t handleStepper(uint64_t irqTime/* time for irq nanosecs */); uint32_t handleStepper(uint64_t irqTime /* time for irq nanosecs */);
void startTimerCB(); void startTimerCB();
void pulseTimerCB(); void pulseTimerCB();
uint32_t updatePos(uint32_t i); uint32_t updatePos(uint32_t i);
}; };
class extend32to64
{
public:
int64_t previousTimeValue = 0;
const uint64_t ONE_PERIOD = 4294967296; // almost UINT32_MAX;
const uint64_t HALF_PERIOD = 2147483648;
int64_t extendTime(uint32_t in);
};
#endif #endif

View File

@@ -5,7 +5,7 @@ extern "C"
{ {
#include "esc.h" #include "esc.h"
} }
extern int64_t extendTime(uint32_t); extern extend32to64 longTime;
StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void), TIM_TypeDef *Timer2, void irq2(void)) StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin, uint8_t _dirPin, void irq(void), TIM_TypeDef *Timer2, void irq2(void))
{ {
@@ -21,7 +21,7 @@ StepGen2::StepGen2(TIM_TypeDef *Timer, uint32_t _timerChannel, PinName _stepPin,
stepPin = _stepPin; stepPin = _stepPin;
pulseTimerChan = _timerChannel; pulseTimerChan = _timerChannel;
pulseTimer = new HardwareTimer(Timer); pulseTimer = new HardwareTimer(Timer);
pulseTimer->attachInterrupt(irq); pulseTimer->attachInterrupt(pulseTimerChan, irq); // Capture/compare innterrupt
pinMode(dirPin, OUTPUT); pinMode(dirPin, OUTPUT);
startTimer = new HardwareTimer(Timer2); startTimer = new HardwareTimer(Timer2);
startTimer->attachInterrupt(irq2); startTimer->attachInterrupt(irq2);
@@ -48,10 +48,12 @@ uint32_t StepGen2::handleStepper(uint64_t irqTime)
// Operating on incoming positions (not steps) // Operating on incoming positions (not steps)
// if (fabs(kTRAJ * lcncCycleTime * stepsPerMM) < 0.01) // Very flat slope // if (fabs(kTRAJ * lcncCycleTime * stepsPerMM) < 0.01) // Very flat slope
nSteps = commandedStepPosition - initialStepPosition; // nSteps = commandedStepPosition - initialStepPosition; //
if (abs(nSteps) <= 8) // Some small number
{ // if (abs(nSteps) < 1000) // Some small number
Tstartf = 0; // Just take a step in the middle of the cycle { //
frequency = 1000 * (abs(nSteps) + 1); // At some suitable frequency frequency = (abs(nSteps) + 1) / lcncCycleTime;
Tpulses = abs(nSteps) / frequency;
Tstartf = (lcncCycleTime - Tpulses) / 2.0;
} }
else // Regular step train, up or down else // Regular step train, up or down
{ {
@@ -59,15 +61,15 @@ uint32_t StepGen2::handleStepper(uint64_t irqTime)
Tstartf = (float(initialStepPosition + 1) / float(stepsPerMM) - mTRAJ) / kTRAJ; Tstartf = (float(initialStepPosition + 1) / float(stepsPerMM) - mTRAJ) / kTRAJ;
else else
Tstartf = (float(initialStepPosition) / float(stepsPerMM) - mTRAJ) / kTRAJ; Tstartf = (float(initialStepPosition) / float(stepsPerMM) - mTRAJ) / kTRAJ;
frequency = fabs(kTRAJ * stepsPerMM); frequency = fabs(kTRAJ * stepsPerMM); //
nSteps = commandedStepPosition - initialStepPosition; // sign(nSteps) = direction. Tpulses = abs(nSteps) / frequency;
} }
updatePos(5); updatePos(5);
uint64_t nowTime = extendTime(micros()); // usecs uint32_t timeSinceISR = (longTime.extendTime(micros()) - irqTime); // Diff time from ISR (usecs)
dbg = nowTime - irqTime; dbg = timeSinceISR;
Tstartu = Tjitter + Tstartf * 1e6 // Was secs, now usecs Tstartu = Tjitter + uint32_t(Tstartf * 1e6) - timeSinceISR; // Have already wasted some time since the irq.
- (nowTime - irqTime); // Have already wasted some time since the irq.
timerFrequency = uint32_t(frequency);
startTimer->setOverflow(Tstartu, MICROSEC_FORMAT); // All handled by irqs startTimer->setOverflow(Tstartu, MICROSEC_FORMAT); // All handled by irqs
startTimer->resume(); startTimer->resume();
return 1; return 1;
@@ -76,11 +78,10 @@ void StepGen2::startTimerCB()
{ {
digitalWrite(dirPin, cnt++ % 2); digitalWrite(dirPin, cnt++ % 2);
startTimer->pause(); // Once is enough. startTimer->pause(); // Once is enough.
// digitalWrite(dirPin, nSteps > 0 ? 1 : -1);
timerPulseSteps = abs(nSteps); timerPulseSteps = abs(nSteps);
pulseTimer->setMode(pulseTimerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin); pulseTimer->setMode(pulseTimerChan, TIMER_OUTPUT_COMPARE_PWM2, stepPin);
pulseTimer->setOverflow(uint32_t(frequency), HERTZ_FORMAT); pulseTimer->setOverflow(timerFrequency, HERTZ_FORMAT);
pulseTimer->setCaptureCompare(pulseTimerChan, 50, PERCENT_COMPARE_FORMAT); // 50% pulseTimer->setCaptureCompare(pulseTimerChan, 5, MICROSEC_COMPARE_FORMAT); // 5 usecs
pulseTimer->resume(); pulseTimer->resume();
} }
void StepGen2::pulseTimerCB() void StepGen2::pulseTimerCB()
@@ -101,3 +102,20 @@ uint32_t StepGen2::updatePos(uint32_t i)
} }
uint32_t StepGen2::sync0CycleTime = 0; uint32_t StepGen2::sync0CycleTime = 0;
// Extend from 32-bit to 64-bit precision
int64_t extend32to64::extendTime(uint32_t in)
{
int64_t c64 = (int64_t)in - HALF_PERIOD; // remove half period to determine (+/-) sign of the wrap
int64_t dif = (c64 - previousTimeValue); // core concept: prev + (current - prev) = current
// wrap difference from -HALF_PERIOD to HALF_PERIOD. modulo prevents differences after the wrap from having an incorrect result
int64_t mod_dif = ((dif + HALF_PERIOD) % ONE_PERIOD) - HALF_PERIOD;
if (dif < -HALF_PERIOD)
mod_dif += ONE_PERIOD; // account for mod of negative number behavior in C
int64_t unwrapped = previousTimeValue + mod_dif;
previousTimeValue = unwrapped; // load previous value
return unwrapped + HALF_PERIOD; // remove the shift we applied at the beginning, and return
}

View File

@@ -27,7 +27,7 @@ void startTimerCallback(void) { Step.startTimerCB(); }
CircularBuffer<uint32_t, 200> Tim; CircularBuffer<uint32_t, 200> Tim;
volatile uint64_t irqTime = 0, thenTime = 0; volatile uint64_t irqTime = 0, thenTime = 0;
volatile uint32_t ccnnt = 0; volatile uint32_t ccnnt = 0;
int64_t extendTime(uint32_t in); // Extend from 32-bit to 64-bit precision extend32to64 longTime;
void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation void cb_set_outputs(void) // Master outputs gets here, slave inputs, first operation
{ {
@@ -42,7 +42,7 @@ void handleStepper(void)
Step.commandedPosition = Obj.StepGenIn1.CommandedPosition; Step.commandedPosition = Obj.StepGenIn1.CommandedPosition;
Obj.StepGenOut1.ActualPosition = Step.commandedPosition; Obj.StepGenOut1.ActualPosition = Step.commandedPosition;
Step.stepsPerMM = Obj.StepGenIn1.StepsPerMM; Step.stepsPerMM = Obj.StepGenIn1.StepsPerMM;
Step.stepsPerMM = 4000; Step.stepsPerMM = 400;
Step.handleStepper(irqTime); Step.handleStepper(irqTime);
Obj.StepGenOut2.ActualPosition = Obj.StepGenIn2.CommandedPosition; Obj.StepGenOut2.ActualPosition = Obj.StepGenIn2.CommandedPosition;
@@ -55,7 +55,7 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
Obj.EncFrequency = Encoder1.frequency(ESCvar.Time); Obj.EncFrequency = Encoder1.frequency(ESCvar.Time);
Obj.IndexByte = Encoder1.getIndexState(); Obj.IndexByte = Encoder1.getIndexState();
uint32_t dTim = extendTime(micros()) - irqTime; // thenTime; // Debug. Getting jitter over the last 200 milliseconds uint32_t dTim = longTime.extendTime(micros()) - irqTime; // thenTime; // Debug. Getting jitter over the last 200 milliseconds
Tim.push(dTim); Tim.push(dTim);
uint32_t max_Tim = 0, min_Tim = UINT32_MAX; uint32_t max_Tim = 0, min_Tim = UINT32_MAX;
for (decltype(Tim)::index_t i = 0; i < Tim.size(); i++) for (decltype(Tim)::index_t i = 0; i < Tim.size(); i++)
@@ -68,8 +68,11 @@ void cb_get_inputs(void) // Set Master inputs, slave outputs, last operation
} }
thenTime = irqTime; thenTime = irqTime;
Obj.DiffT = max_Tim - min_Tim; // Debug Obj.DiffT = max_Tim - min_Tim; // Debug
Obj.DiffT = ccnnt--; Obj.DiffT = abs(Step.nSteps);
// Obj.DiffT = Step.frequency; Obj.D1 = Step.Tjitter;
Obj.D2 = Step.Tstartf * 1e6;
Obj.D3 = Step.dbg;
Obj.D4 = Obj.D1+Obj.D2-Obj.D3;
} }
void ESC_interrupt_enable(uint32_t mask); void ESC_interrupt_enable(uint32_t mask);
@@ -127,7 +130,7 @@ void sync0Handler(void)
ccnnt++; ccnnt++;
ALEventIRQ = ESC_ALeventread(); ALEventIRQ = ESC_ALeventread();
serveIRQ = 1; serveIRQ = 1;
irqTime = extendTime(micros()); irqTime = longTime.extendTime(micros());
digitalWrite(Step.dirPin, cnt++ % 2); digitalWrite(Step.dirPin, cnt++ % 2);
} }
@@ -181,24 +184,3 @@ uint16_t dc_checker(void)
StepGen2::sync0CycleTime = ESC_SYNC0cycletime() / 1000; // usecs StepGen2::sync0CycleTime = ESC_SYNC0cycletime() / 1000; // usecs
return 0; return 0;
} }
#define ONE_PERIOD UINT32_MAX
#define HALF_PERIOD (UINT32_MAX >> 1)
static int64_t previousTimeValue = 0;
// Extend from 32-bit to 64-bit precision
int64_t extendTime(uint32_t in)
{
int64_t c64 = (int64_t)in - HALF_PERIOD; // remove half period to determine (+/-) sign of the wrap
int64_t dif = (c64 - previousTimeValue); // core concept: prev + (current - prev) = current
// wrap difference from -HALF_PERIOD to HALF_PERIOD. modulo prevents differences after the wrap from having an incorrect result
int64_t mod_dif = ((dif + HALF_PERIOD) % ONE_PERIOD) - HALF_PERIOD;
if (dif < -HALF_PERIOD)
mod_dif += ONE_PERIOD; // account for mod of negative number behavior in C
int64_t unwrapped = previousTimeValue + mod_dif;
previousTimeValue = unwrapped; // load previous value
return unwrapped + HALF_PERIOD; // remove the shift we applied at the beginning, and return
}